Jacob L. Moore, Mitchell O'Neall, Colleen Lutz, S. Pearson
{"title":"菱角生物量估计使用密度作为代理:促进多年比较与精简的方法","authors":"Jacob L. Moore, Mitchell O'Neall, Colleen Lutz, S. Pearson","doi":"10.57257/japm-d-22-00007","DOIUrl":null,"url":null,"abstract":"Water chestnut (Trapa natans) is an invasive macrophyte negatively impacting native aquatic communities in the United States. In New York state, water chestnut occurrence is monitored through iMapInvasives, a public database that includes several data fields for all records, such as distribution type (or categorical density). Biomass is not regularly recorded in iMapInvasives but is important as a secondary measurement to gauge primary production, nutrient uptake, and invasive impact. Lack of biomass data in iMapInvasives may be addressed with alternative methods of acquiring biomass information from records. The primary goal of this project was to develop methods that allow comparable biomass estimates to be made using a measured area and an observed distribution type in the iMapInvasives database. Nine locations were sampled for water chestnut in June and July 2021. Areas of sparse, dense, and monoculture growth were recorded along with trace points. Collected plants were cleaned, measured, and dried to obtain final dry biomass density values for each distribution type. Density values were highest in monocul-ture and lowest in sparse but also varied based on location and date. ANOVA testing indicated that plant density, rosette growth, and rosette width varied among distribution types. Our water chestnut measurements were used to create formulas that can estimate biomass using presence-and distribution-type data in iMapInvasives. These formulas may be useful for stakeholders and managers seeking to understand the invasive impact of water chestnut and assess its change in abundance over time.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Water chestnut biomass estimates using density as a proxy: Facilitating multiyear comparisons with a streamlined approach\",\"authors\":\"Jacob L. Moore, Mitchell O'Neall, Colleen Lutz, S. Pearson\",\"doi\":\"10.57257/japm-d-22-00007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water chestnut (Trapa natans) is an invasive macrophyte negatively impacting native aquatic communities in the United States. In New York state, water chestnut occurrence is monitored through iMapInvasives, a public database that includes several data fields for all records, such as distribution type (or categorical density). Biomass is not regularly recorded in iMapInvasives but is important as a secondary measurement to gauge primary production, nutrient uptake, and invasive impact. Lack of biomass data in iMapInvasives may be addressed with alternative methods of acquiring biomass information from records. The primary goal of this project was to develop methods that allow comparable biomass estimates to be made using a measured area and an observed distribution type in the iMapInvasives database. Nine locations were sampled for water chestnut in June and July 2021. Areas of sparse, dense, and monoculture growth were recorded along with trace points. Collected plants were cleaned, measured, and dried to obtain final dry biomass density values for each distribution type. Density values were highest in monocul-ture and lowest in sparse but also varied based on location and date. ANOVA testing indicated that plant density, rosette growth, and rosette width varied among distribution types. Our water chestnut measurements were used to create formulas that can estimate biomass using presence-and distribution-type data in iMapInvasives. These formulas may be useful for stakeholders and managers seeking to understand the invasive impact of water chestnut and assess its change in abundance over time.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.57257/japm-d-22-00007\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.57257/japm-d-22-00007","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Water chestnut biomass estimates using density as a proxy: Facilitating multiyear comparisons with a streamlined approach
Water chestnut (Trapa natans) is an invasive macrophyte negatively impacting native aquatic communities in the United States. In New York state, water chestnut occurrence is monitored through iMapInvasives, a public database that includes several data fields for all records, such as distribution type (or categorical density). Biomass is not regularly recorded in iMapInvasives but is important as a secondary measurement to gauge primary production, nutrient uptake, and invasive impact. Lack of biomass data in iMapInvasives may be addressed with alternative methods of acquiring biomass information from records. The primary goal of this project was to develop methods that allow comparable biomass estimates to be made using a measured area and an observed distribution type in the iMapInvasives database. Nine locations were sampled for water chestnut in June and July 2021. Areas of sparse, dense, and monoculture growth were recorded along with trace points. Collected plants were cleaned, measured, and dried to obtain final dry biomass density values for each distribution type. Density values were highest in monocul-ture and lowest in sparse but also varied based on location and date. ANOVA testing indicated that plant density, rosette growth, and rosette width varied among distribution types. Our water chestnut measurements were used to create formulas that can estimate biomass using presence-and distribution-type data in iMapInvasives. These formulas may be useful for stakeholders and managers seeking to understand the invasive impact of water chestnut and assess its change in abundance over time.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.