由分数贝塞尔导数定义的雅可比型函数

IF 0.7 3区 数学 Q2 MATHEMATICS
F. Bouzeffour, W. Jedidi
{"title":"由分数贝塞尔导数定义的雅可比型函数","authors":"F. Bouzeffour, W. Jedidi","doi":"10.1080/10652469.2022.2108419","DOIUrl":null,"url":null,"abstract":"ABSTRACT For a class of even weight functions, generalizations of the classical Jacobi and Laguerre polynomials are defined via fractional Rodrigues' type formulas using the Bessel operators in the form . Their properties, including hypergeometric representation, differential recurrence relations and fractional boundary value problem, are investigated.","PeriodicalId":54972,"journal":{"name":"Integral Transforms and Special Functions","volume":"34 1","pages":"228 - 243"},"PeriodicalIF":0.7000,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Jacobi-type functions defined by fractional Bessel derivatives\",\"authors\":\"F. Bouzeffour, W. Jedidi\",\"doi\":\"10.1080/10652469.2022.2108419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT For a class of even weight functions, generalizations of the classical Jacobi and Laguerre polynomials are defined via fractional Rodrigues' type formulas using the Bessel operators in the form . Their properties, including hypergeometric representation, differential recurrence relations and fractional boundary value problem, are investigated.\",\"PeriodicalId\":54972,\"journal\":{\"name\":\"Integral Transforms and Special Functions\",\"volume\":\"34 1\",\"pages\":\"228 - 243\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integral Transforms and Special Functions\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/10652469.2022.2108419\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integral Transforms and Special Functions","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10652469.2022.2108419","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要对于一类偶权函数,利用分数阶Rodrigues型公式,利用贝塞尔算子定义了经典Jacobi多项式和Laguerre多项式的推广,其形式为:研究了它们的性质,包括超几何表示、微分递归关系和分数边值问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Jacobi-type functions defined by fractional Bessel derivatives
ABSTRACT For a class of even weight functions, generalizations of the classical Jacobi and Laguerre polynomials are defined via fractional Rodrigues' type formulas using the Bessel operators in the form . Their properties, including hypergeometric representation, differential recurrence relations and fractional boundary value problem, are investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
20.00%
发文量
49
审稿时长
6-12 weeks
期刊介绍: Integral Transforms and Special Functions belongs to the basic subjects of mathematical analysis, the theory of differential and integral equations, approximation theory, and to many other areas of pure and applied mathematics. Although centuries old, these subjects are under intense development, for use in pure and applied mathematics, physics, engineering and computer science. This stimulates continuous interest for researchers in these fields. The aim of Integral Transforms and Special Functions is to foster further growth by providing a means for the publication of important research on all aspects of the subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信