格上的圆与极大行列式矩阵

Q3 Mathematics
N. A. Balonin, M. Sergeev, J. Seberry, Olga Sinitshina
{"title":"格上的圆与极大行列式矩阵","authors":"N. A. Balonin, M. Sergeev, J. Seberry, Olga Sinitshina","doi":"10.31799/1684-8853-2020-6-2-11","DOIUrl":null,"url":null,"abstract":"Introduction: The Hadamard conjecture about the existence of maximum determinant matrices in all orders multiple of 4 is closely related to Gauss's problem about the number of points with integer coordinates (Z3 lattice points) on a spheroid, cone, paraboloid or parabola. The location of these points dictates the number and types of extreme matrices. Purpose: Finding out how Gaussian points on sections of solids of revolution are related to the number and types of maximum determinant matrices with a fixed structure for odd orders. Specifying a precise upper bound of maximum determinant values for edged two-circulant matrices and the orders on which they prevail over simpler cyclic structures. Results: A newly proposed formula refines the overly optimistic Elich – Wojtas’ upper bound for the case of matrices with а fixed structure. Fermat numbers have a special role for orders of 4t + 1, and Barba numbers affect the formation of classes of maximum determinant matrices which occupy the areas of orders 4t + 3, successively replacing each other. For a two-circulant structure with an edge, the maximum order of an optimal symmetric solution is estimated as 67. It is proved that the determinant of edged block matrices is superior to the determinants of circulant matrices everywhere except for a special order 39. Practical relevance: Maximum (for a fixed structure) determinant matrices related to lattice points have a direct practical significance for noise-resistant coding, compression and masking of video data.","PeriodicalId":36977,"journal":{"name":"Informatsionno-Upravliaiushchie Sistemy","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Circles on lattices and maximum determinant matrices\",\"authors\":\"N. A. Balonin, M. Sergeev, J. Seberry, Olga Sinitshina\",\"doi\":\"10.31799/1684-8853-2020-6-2-11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: The Hadamard conjecture about the existence of maximum determinant matrices in all orders multiple of 4 is closely related to Gauss's problem about the number of points with integer coordinates (Z3 lattice points) on a spheroid, cone, paraboloid or parabola. The location of these points dictates the number and types of extreme matrices. Purpose: Finding out how Gaussian points on sections of solids of revolution are related to the number and types of maximum determinant matrices with a fixed structure for odd orders. Specifying a precise upper bound of maximum determinant values for edged two-circulant matrices and the orders on which they prevail over simpler cyclic structures. Results: A newly proposed formula refines the overly optimistic Elich – Wojtas’ upper bound for the case of matrices with а fixed structure. Fermat numbers have a special role for orders of 4t + 1, and Barba numbers affect the formation of classes of maximum determinant matrices which occupy the areas of orders 4t + 3, successively replacing each other. For a two-circulant structure with an edge, the maximum order of an optimal symmetric solution is estimated as 67. It is proved that the determinant of edged block matrices is superior to the determinants of circulant matrices everywhere except for a special order 39. Practical relevance: Maximum (for a fixed structure) determinant matrices related to lattice points have a direct practical significance for noise-resistant coding, compression and masking of video data.\",\"PeriodicalId\":36977,\"journal\":{\"name\":\"Informatsionno-Upravliaiushchie Sistemy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatsionno-Upravliaiushchie Sistemy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31799/1684-8853-2020-6-2-11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatsionno-Upravliaiushchie Sistemy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31799/1684-8853-2020-6-2-11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

引言:关于4的所有阶倍数上存在最大行列式矩阵的Hadamard猜想与高斯关于球面、圆锥、抛物面或抛物线上具有整数坐标的点(Z3格点)的数量的问题密切相关。这些点的位置决定了极限矩阵的数量和类型。目的:了解旋转固体截面上的高斯点与奇数阶固定结构的最大行列式矩阵的数量和类型之间的关系。为带边的两个循环矩阵指定最大行列式值的精确上界,以及它们优于简单循环结构的阶数。结果:一个新提出的公式改进了具有固定结构的矩阵情况下过于乐观的Elich–Wojtas上界。Fermat数对4t+1阶有着特殊的作用,Barba数影响了占据4t+3阶区域的极大行列式矩阵类的形成,这些矩阵类依次相互替换。对于具有边的双循环结构,最优对称解的最大阶估计为67。证明了边块矩阵的行列式在除特殊阶39以外的任何地方都优于循环矩阵的行列式。实际相关性:与格点相关的最大(对于固定结构)行列式矩阵对视频数据的抗噪声编码、压缩和屏蔽具有直接的实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Circles on lattices and maximum determinant matrices
Introduction: The Hadamard conjecture about the existence of maximum determinant matrices in all orders multiple of 4 is closely related to Gauss's problem about the number of points with integer coordinates (Z3 lattice points) on a spheroid, cone, paraboloid or parabola. The location of these points dictates the number and types of extreme matrices. Purpose: Finding out how Gaussian points on sections of solids of revolution are related to the number and types of maximum determinant matrices with a fixed structure for odd orders. Specifying a precise upper bound of maximum determinant values for edged two-circulant matrices and the orders on which they prevail over simpler cyclic structures. Results: A newly proposed formula refines the overly optimistic Elich – Wojtas’ upper bound for the case of matrices with а fixed structure. Fermat numbers have a special role for orders of 4t + 1, and Barba numbers affect the formation of classes of maximum determinant matrices which occupy the areas of orders 4t + 3, successively replacing each other. For a two-circulant structure with an edge, the maximum order of an optimal symmetric solution is estimated as 67. It is proved that the determinant of edged block matrices is superior to the determinants of circulant matrices everywhere except for a special order 39. Practical relevance: Maximum (for a fixed structure) determinant matrices related to lattice points have a direct practical significance for noise-resistant coding, compression and masking of video data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Informatsionno-Upravliaiushchie Sistemy
Informatsionno-Upravliaiushchie Sistemy Mathematics-Control and Optimization
CiteScore
1.40
自引率
0.00%
发文量
35
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信