随机交错是i.i.d的一个因素。

IF 1.3 3区 数学 Q2 STATISTICS & PROBABILITY
M'arton Borb'enyi, Bal'azs R'ath, S. Rokob
{"title":"随机交错是i.i.d的一个因素。","authors":"M'arton Borb'enyi, Bal'azs R'ath, S. Rokob","doi":"10.1214/23-EJP950","DOIUrl":null,"url":null,"abstract":"The random interlacement point process (introduced by Sznitman, generalized by Teixeira) is a Poisson point process on the space of labeled doubly infinite nearest neighbour trajectories modulo time-shift on a transient graph $G$. We show that the random interlacement point process on any transient transitive graph $G$ is a factor of i.i.d., i.e., it can be constructed from a family of i.i.d. random variables indexed by vertices of the graph via an equivariant measurable map. Our proof uses a variant of the soft local time method (introduced by Popov and Teixeira) to construct the interlacement point process as the almost sure limit of a sequence of finite-length variants of the model with increasing length. We also discuss a more direct method of proving that the interlacement point process is a factor of i.i.d. which works if and only if $G$ is non-unimodular.","PeriodicalId":50538,"journal":{"name":"Electronic Journal of Probability","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Random interlacement is a factor of i.i.d.\",\"authors\":\"M'arton Borb'enyi, Bal'azs R'ath, S. Rokob\",\"doi\":\"10.1214/23-EJP950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The random interlacement point process (introduced by Sznitman, generalized by Teixeira) is a Poisson point process on the space of labeled doubly infinite nearest neighbour trajectories modulo time-shift on a transient graph $G$. We show that the random interlacement point process on any transient transitive graph $G$ is a factor of i.i.d., i.e., it can be constructed from a family of i.i.d. random variables indexed by vertices of the graph via an equivariant measurable map. Our proof uses a variant of the soft local time method (introduced by Popov and Teixeira) to construct the interlacement point process as the almost sure limit of a sequence of finite-length variants of the model with increasing length. We also discuss a more direct method of proving that the interlacement point process is a factor of i.i.d. which works if and only if $G$ is non-unimodular.\",\"PeriodicalId\":50538,\"journal\":{\"name\":\"Electronic Journal of Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-EJP950\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-EJP950","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

随机交错点过程(由Sznitman引入,由Teixeira推广)是暂态图$G$上标记的双无限近邻轨迹模时移空间上的泊松点过程。我们证明了任意暂态传递图$G$上的随机交点过程是i.i.d的一个因子,即它可以由由图的顶点索引的i.d随机变量族通过一个等变可测映射构造而成。我们的证明使用软局部时间方法(由Popov和Teixeira引入)的一种变体来构造交错点过程,作为长度增加的模型的有限长度变体序列的几乎确定极限。我们还讨论了一种更直接的方法来证明交叉点过程是一个当且仅当$G$是非同模时有效的因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random interlacement is a factor of i.i.d.
The random interlacement point process (introduced by Sznitman, generalized by Teixeira) is a Poisson point process on the space of labeled doubly infinite nearest neighbour trajectories modulo time-shift on a transient graph $G$. We show that the random interlacement point process on any transient transitive graph $G$ is a factor of i.i.d., i.e., it can be constructed from a family of i.i.d. random variables indexed by vertices of the graph via an equivariant measurable map. Our proof uses a variant of the soft local time method (introduced by Popov and Teixeira) to construct the interlacement point process as the almost sure limit of a sequence of finite-length variants of the model with increasing length. We also discuss a more direct method of proving that the interlacement point process is a factor of i.i.d. which works if and only if $G$ is non-unimodular.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Probability
Electronic Journal of Probability 数学-统计学与概率论
CiteScore
1.80
自引率
7.10%
发文量
119
审稿时长
4-8 weeks
期刊介绍: The Electronic Journal of Probability publishes full-size research articles in probability theory. The Electronic Communications in Probability (ECP), a sister journal of EJP, publishes short notes and research announcements in probability theory. Both ECP and EJP are official journals of the Institute of Mathematical Statistics and the Bernoulli society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信