数据挖掘方法采用线性回归方法来预测测试结果的值数据

M. Sholeh, Erna Kumalasari Nurnawati, Uning Lestari
{"title":"数据挖掘方法采用线性回归方法来预测测试结果的值数据","authors":"M. Sholeh, Erna Kumalasari Nurnawati, Uning Lestari","doi":"10.14421/jiska.2023.8.1.10-21","DOIUrl":null,"url":null,"abstract":"Prediction is one of the methods in data mining. One of the models that can be used in prediction is using linear regression. Linear regression is used to make predictions on the data that has been provided. In this study, a linear regression model was made with a datasheet containing data that affected student achievement in achieving final exam scores. The linear regression model developed can be used to predict student test scores. The linear regression model developed can be used to predict student test scores. The datasheet used in the test uses a public datasheet, namely student_performance.csv. The datasheet consists of 395 records and 33 attributes. The attributes used are selected that influence the label. The selection of attributes is based on the results of the weighting in the process of checking the correlation matrix. Based on the weighting, the attributes used are seven attributes and one attribute becomes a label. The research method uses CRISP DM which consists of business understanding, data understanding, data preparation, model making, evaluation, and deploying. The data mining process uses the Rapid Miner application. The results of the study resulted in a linear regression model y=0.729-(0.024×Medu)-(0.020×Fedu)+(0.053×failures)-(0.077×goout)-(0.012×absences)+(0.126×G1)+(0.862×G2). The result of evaluating the performance of the RMSE value was 0.675. Based on these results, it can be concluded that the resulting model can be recommended for use in predicting student test scores.","PeriodicalId":34216,"journal":{"name":"JISKA Jurnal Informatika Sunan Kalijaga","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Penerapan Data Mining dengan Metode Regresi Linear untuk Memprediksi Data Nilai Hasil Ujian Menggunakan RapidMiner\",\"authors\":\"M. Sholeh, Erna Kumalasari Nurnawati, Uning Lestari\",\"doi\":\"10.14421/jiska.2023.8.1.10-21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prediction is one of the methods in data mining. One of the models that can be used in prediction is using linear regression. Linear regression is used to make predictions on the data that has been provided. In this study, a linear regression model was made with a datasheet containing data that affected student achievement in achieving final exam scores. The linear regression model developed can be used to predict student test scores. The linear regression model developed can be used to predict student test scores. The datasheet used in the test uses a public datasheet, namely student_performance.csv. The datasheet consists of 395 records and 33 attributes. The attributes used are selected that influence the label. The selection of attributes is based on the results of the weighting in the process of checking the correlation matrix. Based on the weighting, the attributes used are seven attributes and one attribute becomes a label. The research method uses CRISP DM which consists of business understanding, data understanding, data preparation, model making, evaluation, and deploying. The data mining process uses the Rapid Miner application. The results of the study resulted in a linear regression model y=0.729-(0.024×Medu)-(0.020×Fedu)+(0.053×failures)-(0.077×goout)-(0.012×absences)+(0.126×G1)+(0.862×G2). The result of evaluating the performance of the RMSE value was 0.675. Based on these results, it can be concluded that the resulting model can be recommended for use in predicting student test scores.\",\"PeriodicalId\":34216,\"journal\":{\"name\":\"JISKA Jurnal Informatika Sunan Kalijaga\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JISKA Jurnal Informatika Sunan Kalijaga\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14421/jiska.2023.8.1.10-21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JISKA Jurnal Informatika Sunan Kalijaga","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14421/jiska.2023.8.1.10-21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

预测是数据挖掘中的一种方法。其中一个可以用于预测的模型是使用线性回归。线性回归用于对已提供的数据进行预测。在本研究中,我们用一个数据表建立了一个线性回归模型,其中包含了影响学生期末考试成绩的数据。所建立的线性回归模型可用于预测学生考试成绩。所建立的线性回归模型可用于预测学生考试成绩。测试中使用的数据表使用公共数据表,即student_performance.csv。数据表包含395条记录和33个属性。所使用的影响标签的属性被选中。属性的选择是基于在检查关联矩阵的过程中加权的结果。根据权重,使用的属性是7个属性,其中一个属性成为标签。研究方法采用CRISP DM,包括业务理解、数据理解、数据准备、模型制作、评估和部署。数据挖掘过程使用Rapid Miner应用程序。研究结果得到线性回归模型y=0.729-(0.024×Medu)-(0.020×Fedu)+(0.053×failures)-(0.077×goout)-(0.012×absences)+(0.126×G1)+(0.862×G2)。评价绩效的RMSE值为0.675。基于这些结果,可以得出结论,所得模型可以推荐用于预测学生的考试成绩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Penerapan Data Mining dengan Metode Regresi Linear untuk Memprediksi Data Nilai Hasil Ujian Menggunakan RapidMiner
Prediction is one of the methods in data mining. One of the models that can be used in prediction is using linear regression. Linear regression is used to make predictions on the data that has been provided. In this study, a linear regression model was made with a datasheet containing data that affected student achievement in achieving final exam scores. The linear regression model developed can be used to predict student test scores. The linear regression model developed can be used to predict student test scores. The datasheet used in the test uses a public datasheet, namely student_performance.csv. The datasheet consists of 395 records and 33 attributes. The attributes used are selected that influence the label. The selection of attributes is based on the results of the weighting in the process of checking the correlation matrix. Based on the weighting, the attributes used are seven attributes and one attribute becomes a label. The research method uses CRISP DM which consists of business understanding, data understanding, data preparation, model making, evaluation, and deploying. The data mining process uses the Rapid Miner application. The results of the study resulted in a linear regression model y=0.729-(0.024×Medu)-(0.020×Fedu)+(0.053×failures)-(0.077×goout)-(0.012×absences)+(0.126×G1)+(0.862×G2). The result of evaluating the performance of the RMSE value was 0.675. Based on these results, it can be concluded that the resulting model can be recommended for use in predicting student test scores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
21
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信