正常肺模型中AVM-2与传统通气模式的机械通气能力:一项台架研究

Parthav Shah, J. Yeo, W. Techasatian, Franck Claudio, Ehab Daoud
{"title":"正常肺模型中AVM-2与传统通气模式的机械通气能力:一项台架研究","authors":"Parthav Shah, J. Yeo, W. Techasatian, Franck Claudio, Ehab Daoud","doi":"10.53097/jmv.10047","DOIUrl":null,"url":null,"abstract":"Introduction Recent studies suggested that the energy delivered by the mechanical ventilator to the lungs termed the mechanical power can induce and increase the risks of ventilator induced lung injury. The components of the mechanical power include the variables delivered by the ventilator: tidal volume, respiratory rate, inspiratory flow, airway pressure. Adaptive Ventilator Mode-2 (AVM-2) is a pressure-controlled mode with an optimal targeting scheme based on the inspiratory power equation that adjusts the respiratory rate and tidal volume to achieve a target minute ventilation. This mode conceptually should reduce the mechanical power delivered to the patients and thus reduce the incidence of ventilator induced lung injury. Methodology A bench study using a lung simulator (TTL, Michigan Instruments, Michigan, USA) was conducted. We constructed a passive single compartment normal respiratory mechanics model with compliance of 50 ml/cmH2O, and resistance of 10 cmH2O/L/s, with IBW 70 kg. We compared three different ventilator modes: Adaptive Ventilation Mode-2 (AVM-2), Pressure Regulated Volume Control (PRVC), and Volume Controlled Ventilation (VCV) in four different scenarios: 2 levels of minute ventilation 7 and 10.5 Lit/min (Experiment 1 and 2 respectively), each with 2 different PEEP levels 5 and 10 cmH2O (Experiment A and B respectively) termed Experiments 1A, 1B, 2A, and 2B respectively. The AVM-2 mode automatically selects the optimal tidal volume, and respiratory rate per the dialed percent minute ventilation with an I:E ratio of 1:1. In the PRVC, VCV we selected target tidal volume 6ml/kg/IBW (420 ml), and respiratory rate adjusted to match the minute ventilation for the AVM-2 mode. I:E ratio was kept 1:2 to avoid intrinsic PEEP. The study was conducted using a bellavista™ 1000 e Ventilator (Vyaire Medical, Illinois, USA). The mechanical power delivered by the ventilator for each mode was computed and compared between the three modes in each experiment. Statistical analysis was done using Kruskal-Wallis test to analyze the difference between the three modes, post HOC Tukey test was used to analyze the difference between each mode with the confidence intervals, P < 0.05 was considered statistically significant. Results There were statistically significant differences between all the three modes regarding the ventilator delivered mechanical power. The AVM-2 mode delivered significantly less mechanical power than VCV which in turn was less than PRVC. Experiment 1A: AVM-2 8.76 土 0.05, VCV 9.78 土 0.04, PRVC 10.82 土 0.08, P < 0.001 Experiment 1B: AVM-2 11.27 ± 0.09 VCV 12.81 ± 0.05, PRVC 13.88 ± 0.06, P < 0.001. Experiment 2A: AVM-2 14.76 ± 0.05, VCV 15.79 ± 0.05, PRVC 18.29 ± 0.07, P < 0.001, Experiment 2B: AVM-2 18.76 ± 0.04, VCV 20.56 ± 0.04, PRVC 21.17 土 0.03, P < 0.001. Discussion AVM2 mode delivered less mechanical power compared to two conventional modes using low tidal volume in a normal lung model. This might reduce the incidence of ventilator induced lung injury. Results need to be validated in more clinical studies.","PeriodicalId":73813,"journal":{"name":"Journal of mechanical ventilation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mechanical power in AVM-2 versus conventional ventilation modes in a normal lung model: A bench study\",\"authors\":\"Parthav Shah, J. Yeo, W. Techasatian, Franck Claudio, Ehab Daoud\",\"doi\":\"10.53097/jmv.10047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction Recent studies suggested that the energy delivered by the mechanical ventilator to the lungs termed the mechanical power can induce and increase the risks of ventilator induced lung injury. The components of the mechanical power include the variables delivered by the ventilator: tidal volume, respiratory rate, inspiratory flow, airway pressure. Adaptive Ventilator Mode-2 (AVM-2) is a pressure-controlled mode with an optimal targeting scheme based on the inspiratory power equation that adjusts the respiratory rate and tidal volume to achieve a target minute ventilation. This mode conceptually should reduce the mechanical power delivered to the patients and thus reduce the incidence of ventilator induced lung injury. Methodology A bench study using a lung simulator (TTL, Michigan Instruments, Michigan, USA) was conducted. We constructed a passive single compartment normal respiratory mechanics model with compliance of 50 ml/cmH2O, and resistance of 10 cmH2O/L/s, with IBW 70 kg. We compared three different ventilator modes: Adaptive Ventilation Mode-2 (AVM-2), Pressure Regulated Volume Control (PRVC), and Volume Controlled Ventilation (VCV) in four different scenarios: 2 levels of minute ventilation 7 and 10.5 Lit/min (Experiment 1 and 2 respectively), each with 2 different PEEP levels 5 and 10 cmH2O (Experiment A and B respectively) termed Experiments 1A, 1B, 2A, and 2B respectively. The AVM-2 mode automatically selects the optimal tidal volume, and respiratory rate per the dialed percent minute ventilation with an I:E ratio of 1:1. In the PRVC, VCV we selected target tidal volume 6ml/kg/IBW (420 ml), and respiratory rate adjusted to match the minute ventilation for the AVM-2 mode. I:E ratio was kept 1:2 to avoid intrinsic PEEP. The study was conducted using a bellavista™ 1000 e Ventilator (Vyaire Medical, Illinois, USA). The mechanical power delivered by the ventilator for each mode was computed and compared between the three modes in each experiment. Statistical analysis was done using Kruskal-Wallis test to analyze the difference between the three modes, post HOC Tukey test was used to analyze the difference between each mode with the confidence intervals, P < 0.05 was considered statistically significant. Results There were statistically significant differences between all the three modes regarding the ventilator delivered mechanical power. The AVM-2 mode delivered significantly less mechanical power than VCV which in turn was less than PRVC. Experiment 1A: AVM-2 8.76 土 0.05, VCV 9.78 土 0.04, PRVC 10.82 土 0.08, P < 0.001 Experiment 1B: AVM-2 11.27 ± 0.09 VCV 12.81 ± 0.05, PRVC 13.88 ± 0.06, P < 0.001. Experiment 2A: AVM-2 14.76 ± 0.05, VCV 15.79 ± 0.05, PRVC 18.29 ± 0.07, P < 0.001, Experiment 2B: AVM-2 18.76 ± 0.04, VCV 20.56 ± 0.04, PRVC 21.17 土 0.03, P < 0.001. Discussion AVM2 mode delivered less mechanical power compared to two conventional modes using low tidal volume in a normal lung model. This might reduce the incidence of ventilator induced lung injury. Results need to be validated in more clinical studies.\",\"PeriodicalId\":73813,\"journal\":{\"name\":\"Journal of mechanical ventilation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of mechanical ventilation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53097/jmv.10047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of mechanical ventilation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53097/jmv.10047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来的研究表明,机械呼吸机向肺输送的能量称为机械功率,可诱发并增加呼吸机所致肺损伤的风险。机械动力的组成包括呼吸机输送的变量:潮气量、呼吸频率、吸气流量、气道压力。自适应呼吸机模式-2 (Adaptive Ventilator mode -2, AVM-2)是一种压力控制模式,基于吸气功率方程,通过调节呼吸频率和潮气量来实现目标分钟通气。这种模式在概念上应该减少传递给患者的机械功率,从而减少呼吸机所致肺损伤的发生率。方法采用肺模拟器(TTL, Michigan Instruments, Michigan, USA)进行台架研究。建立被动单室正常呼吸力学模型,顺应性为50 ml/cmH2O,阻力为10 cmH2O/L/s,体重70 kg。我们比较了三种不同的呼吸机模式:自适应通风模式-2 (AVM-2)、压力调节体积控制(PRVC)和体积控制通风(VCV)在四种不同的情况下:2个水平的分钟通风7和10.5 Lit/min(实验1和2),每一个都有2个不同的PEEP水平5和10 cmH2O(实验A和B),分别称为实验1A、1B、2A和2B。AVM-2模式自动选择最佳潮气量,呼吸率每拨号百分比分钟通风与1:1的I:E比。在PRVC和VCV中,我们选择目标潮气量6ml/kg/IBW (420 ml),并调整呼吸速率以匹配AVM-2模式的分钟通气。I:E比值保持1:2,避免内源性PEEP。本研究使用bellavista™1000e呼吸机(Vyaire Medical, Illinois, USA)进行。计算了每种模式下呼吸机的机械输出功率,并在每次实验中对三种模式进行了比较。采用Kruskal-Wallis检验分析三种模式之间的差异,采用post HOC Tukey检验分析各模式之间的差异,采用置信区间,P < 0.05为有统计学意义。结果三种模式呼吸机输出机械功率差异有统计学意义。AVM-2模式提供的机械功率明显低于VCV,而VCV又低于PRVC。实验1A: AVM-2 8.76±0.05,VCV 9.78±0.04,PRVC 10.82±0.08,P < 0.001实验1B: AVM-2 11.27±0.09 VCV 12.81±0.05,PRVC 13.88±0.06,P < 0.001。实验2A: AVM-2 14.76±0.05,VCV 15.79±0.05,PRVC 18.29±0.07,P < 0.001,实验2B: AVM-2 18.76±0.04,VCV 20.56±0.04,PRVC 21.17±0.03,P < 0.001。在正常肺模型中,与使用低潮气量的两种传统模式相比,AVM2模式提供的机械功率更小。这可能会减少呼吸机所致肺损伤的发生率。结果需要在更多的临床研究中得到验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanical power in AVM-2 versus conventional ventilation modes in a normal lung model: A bench study
Introduction Recent studies suggested that the energy delivered by the mechanical ventilator to the lungs termed the mechanical power can induce and increase the risks of ventilator induced lung injury. The components of the mechanical power include the variables delivered by the ventilator: tidal volume, respiratory rate, inspiratory flow, airway pressure. Adaptive Ventilator Mode-2 (AVM-2) is a pressure-controlled mode with an optimal targeting scheme based on the inspiratory power equation that adjusts the respiratory rate and tidal volume to achieve a target minute ventilation. This mode conceptually should reduce the mechanical power delivered to the patients and thus reduce the incidence of ventilator induced lung injury. Methodology A bench study using a lung simulator (TTL, Michigan Instruments, Michigan, USA) was conducted. We constructed a passive single compartment normal respiratory mechanics model with compliance of 50 ml/cmH2O, and resistance of 10 cmH2O/L/s, with IBW 70 kg. We compared three different ventilator modes: Adaptive Ventilation Mode-2 (AVM-2), Pressure Regulated Volume Control (PRVC), and Volume Controlled Ventilation (VCV) in four different scenarios: 2 levels of minute ventilation 7 and 10.5 Lit/min (Experiment 1 and 2 respectively), each with 2 different PEEP levels 5 and 10 cmH2O (Experiment A and B respectively) termed Experiments 1A, 1B, 2A, and 2B respectively. The AVM-2 mode automatically selects the optimal tidal volume, and respiratory rate per the dialed percent minute ventilation with an I:E ratio of 1:1. In the PRVC, VCV we selected target tidal volume 6ml/kg/IBW (420 ml), and respiratory rate adjusted to match the minute ventilation for the AVM-2 mode. I:E ratio was kept 1:2 to avoid intrinsic PEEP. The study was conducted using a bellavista™ 1000 e Ventilator (Vyaire Medical, Illinois, USA). The mechanical power delivered by the ventilator for each mode was computed and compared between the three modes in each experiment. Statistical analysis was done using Kruskal-Wallis test to analyze the difference between the three modes, post HOC Tukey test was used to analyze the difference between each mode with the confidence intervals, P < 0.05 was considered statistically significant. Results There were statistically significant differences between all the three modes regarding the ventilator delivered mechanical power. The AVM-2 mode delivered significantly less mechanical power than VCV which in turn was less than PRVC. Experiment 1A: AVM-2 8.76 土 0.05, VCV 9.78 土 0.04, PRVC 10.82 土 0.08, P < 0.001 Experiment 1B: AVM-2 11.27 ± 0.09 VCV 12.81 ± 0.05, PRVC 13.88 ± 0.06, P < 0.001. Experiment 2A: AVM-2 14.76 ± 0.05, VCV 15.79 ± 0.05, PRVC 18.29 ± 0.07, P < 0.001, Experiment 2B: AVM-2 18.76 ± 0.04, VCV 20.56 ± 0.04, PRVC 21.17 土 0.03, P < 0.001. Discussion AVM2 mode delivered less mechanical power compared to two conventional modes using low tidal volume in a normal lung model. This might reduce the incidence of ventilator induced lung injury. Results need to be validated in more clinical studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信