有机硫化合物的酶解

T. Gardner, Z. Senwo
{"title":"有机硫化合物的酶解","authors":"T. Gardner, Z. Senwo","doi":"10.4236/AER.2019.71001","DOIUrl":null,"url":null,"abstract":"Sulfatases which cleave sulfate esters in biological systems are key enzymes that deserve special attention due to their significant roles in organic sulfur (OS) mineralization and inorganic sulfur () release. In this study, in-vitro experiments were conducted to evaluate S bonded substrate hydrolysis by a commercially available arylsulfatase (EC 3.1.6.1) from Aerobacter aerogenes. The enzyme-substrate interactions were assessed to determine: 1) rate of hydrolysis, 2) catalytic efficiency, 3) thermal stability, and 4) optimal pH of this enzyme. Arylsulfatase exhibited substrate hydrolysis with a high affinity for p-nitrophenyl sulfate (potassium 4-nitrophenyl sulfate (pNPS)). The optimum activity for the enzyme was observed to occur at a pH of 7.1. The optimal temperature was 37°C but ranged from 35°C - 45°C. The apparent Km and Kcat of the enzyme for pNPS hydrolysis at the optimal pH, and temperature were determined to be 1.03 mM and 75.73 μM/min, respectively. This work defines the catalytic and kinetic properties of arylsulfatase (EC 3.1.6.1) and confirms the optimal conditions for sulfatase activity testing. The resulting information is useful in elucidating the contributions that individual enzymes have for specific reactions rather than relying on traditional total enzyme activity measurements.","PeriodicalId":65616,"journal":{"name":"酶研究进展(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Enzymatic Hydrolysis of an Organic Sulfur Compound\",\"authors\":\"T. Gardner, Z. Senwo\",\"doi\":\"10.4236/AER.2019.71001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sulfatases which cleave sulfate esters in biological systems are key enzymes that deserve special attention due to their significant roles in organic sulfur (OS) mineralization and inorganic sulfur () release. In this study, in-vitro experiments were conducted to evaluate S bonded substrate hydrolysis by a commercially available arylsulfatase (EC 3.1.6.1) from Aerobacter aerogenes. The enzyme-substrate interactions were assessed to determine: 1) rate of hydrolysis, 2) catalytic efficiency, 3) thermal stability, and 4) optimal pH of this enzyme. Arylsulfatase exhibited substrate hydrolysis with a high affinity for p-nitrophenyl sulfate (potassium 4-nitrophenyl sulfate (pNPS)). The optimum activity for the enzyme was observed to occur at a pH of 7.1. The optimal temperature was 37°C but ranged from 35°C - 45°C. The apparent Km and Kcat of the enzyme for pNPS hydrolysis at the optimal pH, and temperature were determined to be 1.03 mM and 75.73 μM/min, respectively. This work defines the catalytic and kinetic properties of arylsulfatase (EC 3.1.6.1) and confirms the optimal conditions for sulfatase activity testing. The resulting information is useful in elucidating the contributions that individual enzymes have for specific reactions rather than relying on traditional total enzyme activity measurements.\",\"PeriodicalId\":65616,\"journal\":{\"name\":\"酶研究进展(英文)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"酶研究进展(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/AER.2019.71001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"酶研究进展(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/AER.2019.71001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

硫酸盐酶在有机硫(OS)矿化和无机硫(OS)释放过程中起着重要作用,是生物系统中分解硫酸盐酯的关键酶。在本研究中,我们进行了体外实验,以评估产自有氧菌的市售芳基硫酸酯酶(EC 3.1.6.1)对S键底物的水解效果。评估酶与底物的相互作用,以确定:1)水解速率,2)催化效率,3)热稳定性,4)该酶的最佳pH。芳基硫酸酯酶对对硝基苯基硫酸盐(4-硝基苯基硫酸盐钾(pNPS))具有高亲和力的底物水解。该酶的最佳活性在pH为7.1时出现。最佳温度为37℃,范围为35℃~ 45℃。在最佳pH和温度下,酶解pNPS的表观Km和Kcat分别为1.03 mM和75.73 μM/min。本工作明确了芳基磺化酶(EC 3.1.6.1)的催化和动力学性质,确定了磺化酶活性测试的最佳条件。由此产生的信息有助于阐明单个酶对特定反应的贡献,而不是依赖于传统的总酶活性测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enzymatic Hydrolysis of an Organic Sulfur Compound
Sulfatases which cleave sulfate esters in biological systems are key enzymes that deserve special attention due to their significant roles in organic sulfur (OS) mineralization and inorganic sulfur () release. In this study, in-vitro experiments were conducted to evaluate S bonded substrate hydrolysis by a commercially available arylsulfatase (EC 3.1.6.1) from Aerobacter aerogenes. The enzyme-substrate interactions were assessed to determine: 1) rate of hydrolysis, 2) catalytic efficiency, 3) thermal stability, and 4) optimal pH of this enzyme. Arylsulfatase exhibited substrate hydrolysis with a high affinity for p-nitrophenyl sulfate (potassium 4-nitrophenyl sulfate (pNPS)). The optimum activity for the enzyme was observed to occur at a pH of 7.1. The optimal temperature was 37°C but ranged from 35°C - 45°C. The apparent Km and Kcat of the enzyme for pNPS hydrolysis at the optimal pH, and temperature were determined to be 1.03 mM and 75.73 μM/min, respectively. This work defines the catalytic and kinetic properties of arylsulfatase (EC 3.1.6.1) and confirms the optimal conditions for sulfatase activity testing. The resulting information is useful in elucidating the contributions that individual enzymes have for specific reactions rather than relying on traditional total enzyme activity measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
34
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信