人工智能对癌症诊断成像剂量减少的潜在贡献

A. Retico, M. Fantacci
{"title":"人工智能对癌症诊断成像剂量减少的潜在贡献","authors":"A. Retico, M. Fantacci","doi":"10.21037/JMAI.2019.03.03","DOIUrl":null,"url":null,"abstract":"The efficient detection of lung nodules is an extremely important and challenging task, which has required in the recent years a joint effort by a wide community of scientists including chest doctors, radiologists, nuclear medicine physicians, and experts in medical instrumentation, image processing and artificial intelligence.","PeriodicalId":73815,"journal":{"name":"Journal of medical artificial intelligence","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.21037/JMAI.2019.03.03","citationCount":"2","resultStr":"{\"title\":\"The potential contribution of artificial intelligence to dose reduction in diagnostic imaging of lung cancer\",\"authors\":\"A. Retico, M. Fantacci\",\"doi\":\"10.21037/JMAI.2019.03.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The efficient detection of lung nodules is an extremely important and challenging task, which has required in the recent years a joint effort by a wide community of scientists including chest doctors, radiologists, nuclear medicine physicians, and experts in medical instrumentation, image processing and artificial intelligence.\",\"PeriodicalId\":73815,\"journal\":{\"name\":\"Journal of medical artificial intelligence\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.21037/JMAI.2019.03.03\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of medical artificial intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21037/JMAI.2019.03.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of medical artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21037/JMAI.2019.03.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

肺结节的有效检测是一项极其重要和具有挑战性的任务,近年来需要包括胸科医生、放射科医生、核医学医生以及医疗仪器、图像处理和人工智能专家在内的众多科学家的共同努力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The potential contribution of artificial intelligence to dose reduction in diagnostic imaging of lung cancer
The efficient detection of lung nodules is an extremely important and challenging task, which has required in the recent years a joint effort by a wide community of scientists including chest doctors, radiologists, nuclear medicine physicians, and experts in medical instrumentation, image processing and artificial intelligence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信