{"title":"乘法函数的渐近公式 $\\frac{d(n)}{k^{\\omega(n)}}$","authors":"Meselem Karras","doi":"10.46298/cm.10104","DOIUrl":null,"url":null,"abstract":"For a fixed integer $k$, we define the multiplicative function\n\\[D_{k,\\omega}(n) := \\frac{d(n)}{k^{\\omega(n)}}, \\]where $d(n)$ is the divisor\nfunction and $\\omega (n)$ is the number of distinct prime divisors of $n$. The\nmain purpose of this paper is the study of the mean value of the function\n$D_{k,\\omega}(n)$ by using elementary methods.","PeriodicalId":37836,"journal":{"name":"Communications in Mathematics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic formula for the multiplicative function $\\\\frac{d(n)}{k^{\\\\omega(n)}}$\",\"authors\":\"Meselem Karras\",\"doi\":\"10.46298/cm.10104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a fixed integer $k$, we define the multiplicative function\\n\\\\[D_{k,\\\\omega}(n) := \\\\frac{d(n)}{k^{\\\\omega(n)}}, \\\\]where $d(n)$ is the divisor\\nfunction and $\\\\omega (n)$ is the number of distinct prime divisors of $n$. The\\nmain purpose of this paper is the study of the mean value of the function\\n$D_{k,\\\\omega}(n)$ by using elementary methods.\",\"PeriodicalId\":37836,\"journal\":{\"name\":\"Communications in Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/cm.10104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/cm.10104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Asymptotic formula for the multiplicative function $\frac{d(n)}{k^{\omega(n)}}$
For a fixed integer $k$, we define the multiplicative function
\[D_{k,\omega}(n) := \frac{d(n)}{k^{\omega(n)}}, \]where $d(n)$ is the divisor
function and $\omega (n)$ is the number of distinct prime divisors of $n$. The
main purpose of this paper is the study of the mean value of the function
$D_{k,\omega}(n)$ by using elementary methods.
期刊介绍:
Communications in Mathematics publishes research and survey papers in all areas of pure and applied mathematics. To be acceptable for publication, the paper must be significant, original and correct. High quality review papers of interest to a wide range of scientists in mathematics and its applications are equally welcome.