Mathieu Reymond, Conor F. Hayes, Denis Steckelmacher, Diederik M. Roijers, Ann Nowé
{"title":"非线性效用函数的行动者-批评家多目标强化学习","authors":"Mathieu Reymond, Conor F. Hayes, Denis Steckelmacher, Diederik M. Roijers, Ann Nowé","doi":"10.1007/s10458-023-09604-x","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a novel multi-objective reinforcement learning algorithm that successfully learns the optimal policy even for non-linear utility functions. Non-linear utility functions pose a challenge for SOTA approaches, both in terms of learning efficiency as well as the solution concept. A key insight is that, by proposing a critic that learns a multi-variate distribution over the returns, which is then combined with accumulated rewards, we can directly optimize on the utility function, even if it is non-linear. This allows us to vastly increase the range of problems that can be solved compared to those which can be handled by single-objective methods or multi-objective methods requiring linear utility functions, yet avoiding the need to learn the full Pareto front. We demonstrate our method on multiple multi-objective benchmarks, and show that it learns effectively where baseline approaches fail.\n</p></div>","PeriodicalId":55586,"journal":{"name":"Autonomous Agents and Multi-Agent Systems","volume":"37 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Actor-critic multi-objective reinforcement learning for non-linear utility functions\",\"authors\":\"Mathieu Reymond, Conor F. Hayes, Denis Steckelmacher, Diederik M. Roijers, Ann Nowé\",\"doi\":\"10.1007/s10458-023-09604-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose a novel multi-objective reinforcement learning algorithm that successfully learns the optimal policy even for non-linear utility functions. Non-linear utility functions pose a challenge for SOTA approaches, both in terms of learning efficiency as well as the solution concept. A key insight is that, by proposing a critic that learns a multi-variate distribution over the returns, which is then combined with accumulated rewards, we can directly optimize on the utility function, even if it is non-linear. This allows us to vastly increase the range of problems that can be solved compared to those which can be handled by single-objective methods or multi-objective methods requiring linear utility functions, yet avoiding the need to learn the full Pareto front. We demonstrate our method on multiple multi-objective benchmarks, and show that it learns effectively where baseline approaches fail.\\n</p></div>\",\"PeriodicalId\":55586,\"journal\":{\"name\":\"Autonomous Agents and Multi-Agent Systems\",\"volume\":\"37 2\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomous Agents and Multi-Agent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10458-023-09604-x\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Agents and Multi-Agent Systems","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10458-023-09604-x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Actor-critic multi-objective reinforcement learning for non-linear utility functions
We propose a novel multi-objective reinforcement learning algorithm that successfully learns the optimal policy even for non-linear utility functions. Non-linear utility functions pose a challenge for SOTA approaches, both in terms of learning efficiency as well as the solution concept. A key insight is that, by proposing a critic that learns a multi-variate distribution over the returns, which is then combined with accumulated rewards, we can directly optimize on the utility function, even if it is non-linear. This allows us to vastly increase the range of problems that can be solved compared to those which can be handled by single-objective methods or multi-objective methods requiring linear utility functions, yet avoiding the need to learn the full Pareto front. We demonstrate our method on multiple multi-objective benchmarks, and show that it learns effectively where baseline approaches fail.
期刊介绍:
This is the official journal of the International Foundation for Autonomous Agents and Multi-Agent Systems. It provides a leading forum for disseminating significant original research results in the foundations, theory, development, analysis, and applications of autonomous agents and multi-agent systems. Coverage in Autonomous Agents and Multi-Agent Systems includes, but is not limited to:
Agent decision-making architectures and their evaluation, including: cognitive models; knowledge representation; logics for agency; ontological reasoning; planning (single and multi-agent); reasoning (single and multi-agent)
Cooperation and teamwork, including: distributed problem solving; human-robot/agent interaction; multi-user/multi-virtual-agent interaction; coalition formation; coordination
Agent communication languages, including: their semantics, pragmatics, and implementation; agent communication protocols and conversations; agent commitments; speech act theory
Ontologies for agent systems, agents and the semantic web, agents and semantic web services, Grid-based systems, and service-oriented computing
Agent societies and societal issues, including: artificial social systems; environments, organizations and institutions; ethical and legal issues; privacy, safety and security; trust, reliability and reputation
Agent-based system development, including: agent development techniques, tools and environments; agent programming languages; agent specification or validation languages
Agent-based simulation, including: emergent behavior; participatory simulation; simulation techniques, tools and environments; social simulation
Agreement technologies, including: argumentation; collective decision making; judgment aggregation and belief merging; negotiation; norms
Economic paradigms, including: auction and mechanism design; bargaining and negotiation; economically-motivated agents; game theory (cooperative and non-cooperative); social choice and voting
Learning agents, including: computational architectures for learning agents; evolution, adaptation; multi-agent learning.
Robotic agents, including: integrated perception, cognition, and action; cognitive robotics; robot planning (including action and motion planning); multi-robot systems.
Virtual agents, including: agents in games and virtual environments; companion and coaching agents; modeling personality, emotions; multimodal interaction; verbal and non-verbal expressiveness
Significant, novel applications of agent technology
Comprehensive reviews and authoritative tutorials of research and practice in agent systems
Comprehensive and authoritative reviews of books dealing with agents and multi-agent systems.