具有R^N临界增长的p分数Kirchhoff方程解的存在性与不存在性

Q4 Mathematics
M. Massar
{"title":"具有R^N临界增长的p分数Kirchhoff方程解的存在性与不存在性","authors":"M. Massar","doi":"10.24193/mathcluj.2023.1.11","DOIUrl":null,"url":null,"abstract":"\"This paper deals with a certain p-fractional Kirchhoff equation. By transforming the equation into an equivalent system, we establish the existence of at least one nontrivial solution or two nontrivial solutions without using the well-known Ambrosetti-Rabinowitz (AR) condition. Furthermore, the nonexistence case is also treated. Our result extends and completes the recent works in the literature.\"","PeriodicalId":39356,"journal":{"name":"Mathematica","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and nonexistence of solutions for a p-fractional Kirchhoff equation with critical growth in R^N\",\"authors\":\"M. Massar\",\"doi\":\"10.24193/mathcluj.2023.1.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"This paper deals with a certain p-fractional Kirchhoff equation. By transforming the equation into an equivalent system, we establish the existence of at least one nontrivial solution or two nontrivial solutions without using the well-known Ambrosetti-Rabinowitz (AR) condition. Furthermore, the nonexistence case is also treated. Our result extends and completes the recent works in the literature.\\\"\",\"PeriodicalId\":39356,\"journal\":{\"name\":\"Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/mathcluj.2023.1.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/mathcluj.2023.1.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

"本文研究了一类p分数Kirchhoff方程。通过将方程转化为一个等价方程组,在不使用众所周知的Ambrosetti-Rabinowitz (AR)条件的情况下,建立了至少一个非平凡解或两个非平凡解的存在性。此外,还讨论了不存在的情况。我们的结果扩展并完善了最近的文献工作。”
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and nonexistence of solutions for a p-fractional Kirchhoff equation with critical growth in R^N
"This paper deals with a certain p-fractional Kirchhoff equation. By transforming the equation into an equivalent system, we establish the existence of at least one nontrivial solution or two nontrivial solutions without using the well-known Ambrosetti-Rabinowitz (AR) condition. Furthermore, the nonexistence case is also treated. Our result extends and completes the recent works in the literature."
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematica
Mathematica Mathematics-Mathematics (all)
CiteScore
0.30
自引率
0.00%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信