{"title":"具有R^N临界增长的p分数Kirchhoff方程解的存在性与不存在性","authors":"M. Massar","doi":"10.24193/mathcluj.2023.1.11","DOIUrl":null,"url":null,"abstract":"\"This paper deals with a certain p-fractional Kirchhoff equation. By transforming the equation into an equivalent system, we establish the existence of at least one nontrivial solution or two nontrivial solutions without using the well-known Ambrosetti-Rabinowitz (AR) condition. Furthermore, the nonexistence case is also treated. Our result extends and completes the recent works in the literature.\"","PeriodicalId":39356,"journal":{"name":"Mathematica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and nonexistence of solutions for a p-fractional Kirchhoff equation with critical growth in R^N\",\"authors\":\"M. Massar\",\"doi\":\"10.24193/mathcluj.2023.1.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"This paper deals with a certain p-fractional Kirchhoff equation. By transforming the equation into an equivalent system, we establish the existence of at least one nontrivial solution or two nontrivial solutions without using the well-known Ambrosetti-Rabinowitz (AR) condition. Furthermore, the nonexistence case is also treated. Our result extends and completes the recent works in the literature.\\\"\",\"PeriodicalId\":39356,\"journal\":{\"name\":\"Mathematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/mathcluj.2023.1.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/mathcluj.2023.1.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Existence and nonexistence of solutions for a p-fractional Kirchhoff equation with critical growth in R^N
"This paper deals with a certain p-fractional Kirchhoff equation. By transforming the equation into an equivalent system, we establish the existence of at least one nontrivial solution or two nontrivial solutions without using the well-known Ambrosetti-Rabinowitz (AR) condition. Furthermore, the nonexistence case is also treated. Our result extends and completes the recent works in the literature."