具有正特征的有限自同构群的Enriques曲面

IF 1.2 1区 数学 Q1 MATHEMATICS
G. Martin
{"title":"具有正特征的有限自同构群的Enriques曲面","authors":"G. Martin","doi":"10.14231/ag-2019-027","DOIUrl":null,"url":null,"abstract":"We classify Enriques surfaces with smooth K3 cover and finite automorphism group in arbitrary positive characteristic. The classification is the same as over the complex numbers except that some types are missing in small characteristics. Moreover, we give a complete description of the moduli of these surfaces. Finally, we realize all types of Enriques surfaces with finite automorphism group over the prime fields $\\mathbb{F}_p$ and $\\mathbb{Q}$ whenever they exist.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2017-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Enriques surfaces with finite automorphism group in positive characteristic\",\"authors\":\"G. Martin\",\"doi\":\"10.14231/ag-2019-027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We classify Enriques surfaces with smooth K3 cover and finite automorphism group in arbitrary positive characteristic. The classification is the same as over the complex numbers except that some types are missing in small characteristics. Moreover, we give a complete description of the moduli of these surfaces. Finally, we realize all types of Enriques surfaces with finite automorphism group over the prime fields $\\\\mathbb{F}_p$ and $\\\\mathbb{Q}$ whenever they exist.\",\"PeriodicalId\":48564,\"journal\":{\"name\":\"Algebraic Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2017-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14231/ag-2019-027\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/ag-2019-027","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 24

摘要

我们对具有光滑K3覆盖和有限自同构群的任意正特征的Enriques曲面进行了分类。除了一些类型在小特征上缺失外,分类与在复数上相同。此外,我们给出了这些曲面的模的完整描述。最后,我们在素域$\mathbb{F}_p$和$\mathbb{Q}$上实现了所有类型的具有有限自同构群的Enriques曲面,只要它们存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enriques surfaces with finite automorphism group in positive characteristic
We classify Enriques surfaces with smooth K3 cover and finite automorphism group in arbitrary positive characteristic. The classification is the same as over the complex numbers except that some types are missing in small characteristics. Moreover, we give a complete description of the moduli of these surfaces. Finally, we realize all types of Enriques surfaces with finite automorphism group over the prime fields $\mathbb{F}_p$ and $\mathbb{Q}$ whenever they exist.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebraic Geometry
Algebraic Geometry Mathematics-Geometry and Topology
CiteScore
2.40
自引率
0.00%
发文量
25
审稿时长
52 weeks
期刊介绍: This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信