具有五态的七格体上的强通用元胞自动机,但不具有规则的旋转不变性

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS
M. Margenstern
{"title":"具有五态的七格体上的强通用元胞自动机,但不具有规则的旋转不变性","authors":"M. Margenstern","doi":"10.1080/17445760.2023.2234157","DOIUrl":null,"url":null,"abstract":"In this paper, we prove that there is a strongly universal cellular automaton on the heptagrid with five states under the relaxation of the assumption of rotation invariance for the rules. The result is different from that of a previous paper of the author with six states but with rotationally invariant rules. Here, the structures is more constrained than in the quoted paper with six states and rotation invariance of the rules.","PeriodicalId":45411,"journal":{"name":"International Journal of Parallel Emergent and Distributed Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A strongly universal cellular automaton on the heptagrid with five states, but with not rotation invariance of the rules\",\"authors\":\"M. Margenstern\",\"doi\":\"10.1080/17445760.2023.2234157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove that there is a strongly universal cellular automaton on the heptagrid with five states under the relaxation of the assumption of rotation invariance for the rules. The result is different from that of a previous paper of the author with six states but with rotationally invariant rules. Here, the structures is more constrained than in the quoted paper with six states and rotation invariance of the rules.\",\"PeriodicalId\":45411,\"journal\":{\"name\":\"International Journal of Parallel Emergent and Distributed Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Parallel Emergent and Distributed Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17445760.2023.2234157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Parallel Emergent and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17445760.2023.2234157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了在规则的旋转不变性假设的放松下,在具有五个状态的七网格上存在一个强通用元自动机。该结果与作者先前的一篇论文不同,该论文有六个状态,但具有旋转不变规则。在这里,结构比引用的论文中更受约束,具有六个状态和规则的旋转不变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A strongly universal cellular automaton on the heptagrid with five states, but with not rotation invariance of the rules
In this paper, we prove that there is a strongly universal cellular automaton on the heptagrid with five states under the relaxation of the assumption of rotation invariance for the rules. The result is different from that of a previous paper of the author with six states but with rotationally invariant rules. Here, the structures is more constrained than in the quoted paper with six states and rotation invariance of the rules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信