深度学习神经网络方法在乳腺癌诊断中的比较研究

IF 1.7 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Haslinah Mohd Nasir, Noor Mohd Ariff Brahin, S. Zainuddin, Mohd Syafiq Mispan, Ida Syafiza Binti Md Isa, M. N. A. Sha'abani
{"title":"深度学习神经网络方法在乳腺癌诊断中的比较研究","authors":"Haslinah Mohd Nasir, Noor Mohd Ariff Brahin, S. Zainuddin, Mohd Syafiq Mispan, Ida Syafiza Binti Md Isa, M. N. A. Sha'abani","doi":"10.3991/ijoe.v19i06.34905","DOIUrl":null,"url":null,"abstract":"Breast cancer is one of the life threatening cancer that leads to the most death due to cancer among the women. Early diagnosis might help to reduce mortality. Thus, this research aims to study on different approaches of the deep learning neural network model for breast cancer early detection for better prognosis. The performance of deep learning approaches such as Artificial Neural Network (ANN), Recurrent Neural Network (RNN) and Convolution Neural Network (CNN) are evaluated using the dataset from the University of Wisconsin. The findings show ANN achieved high accuracy of 99.9 % compared to others in detecting breast cancer. ANN is able to deliver better results with the provided dataset. However, more improvement needed for better performance to ensure that the approach used is reliable enough for breast cancer early diagnosis.","PeriodicalId":36900,"journal":{"name":"International Journal of Online and Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Comparative Study of Deep Learning Neural Network Approaches for Breast Cancer Diagnosis\",\"authors\":\"Haslinah Mohd Nasir, Noor Mohd Ariff Brahin, S. Zainuddin, Mohd Syafiq Mispan, Ida Syafiza Binti Md Isa, M. N. A. Sha'abani\",\"doi\":\"10.3991/ijoe.v19i06.34905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Breast cancer is one of the life threatening cancer that leads to the most death due to cancer among the women. Early diagnosis might help to reduce mortality. Thus, this research aims to study on different approaches of the deep learning neural network model for breast cancer early detection for better prognosis. The performance of deep learning approaches such as Artificial Neural Network (ANN), Recurrent Neural Network (RNN) and Convolution Neural Network (CNN) are evaluated using the dataset from the University of Wisconsin. The findings show ANN achieved high accuracy of 99.9 % compared to others in detecting breast cancer. ANN is able to deliver better results with the provided dataset. However, more improvement needed for better performance to ensure that the approach used is reliable enough for breast cancer early diagnosis.\",\"PeriodicalId\":36900,\"journal\":{\"name\":\"International Journal of Online and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Online and Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3991/ijoe.v19i06.34905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Online and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3991/ijoe.v19i06.34905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

癌症是威胁生命的癌症之一,在女性中导致癌症死亡人数最多。早期诊断可能有助于降低死亡率。因此,本研究旨在研究深度学习神经网络模型用于乳腺癌症早期检测的不同方法,以获得更好的预后。使用威斯康星大学的数据集评估了人工神经网络(ANN)、递归神经网络(RNN)和卷积神经网络(CNN)等深度学习方法的性能。研究结果表明,与其他方法相比,人工神经网络检测癌症的准确率高达99.9%。ANN能够利用所提供的数据集提供更好的结果。然而,需要更多的改进才能获得更好的性能,以确保所使用的方法对于乳腺癌症的早期诊断足够可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Comparative Study of Deep Learning Neural Network Approaches for Breast Cancer Diagnosis
Breast cancer is one of the life threatening cancer that leads to the most death due to cancer among the women. Early diagnosis might help to reduce mortality. Thus, this research aims to study on different approaches of the deep learning neural network model for breast cancer early detection for better prognosis. The performance of deep learning approaches such as Artificial Neural Network (ANN), Recurrent Neural Network (RNN) and Convolution Neural Network (CNN) are evaluated using the dataset from the University of Wisconsin. The findings show ANN achieved high accuracy of 99.9 % compared to others in detecting breast cancer. ANN is able to deliver better results with the provided dataset. However, more improvement needed for better performance to ensure that the approach used is reliable enough for breast cancer early diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
46.20%
发文量
143
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信