介孔硅基生物柴油催化剂研究进展

IF 2.8 Q2 ENGINEERING, CHEMICAL
I. Fatimah, G. Fadillah, S. Sagadevan, W. Oh, K. L. Ameta
{"title":"介孔硅基生物柴油催化剂研究进展","authors":"I. Fatimah, G. Fadillah, S. Sagadevan, W. Oh, K. L. Ameta","doi":"10.3390/chemengineering7030056","DOIUrl":null,"url":null,"abstract":"High demand for energy consumption forced the exploration of renewable energy resources, and in this context, biodiesel has received intensive attention. The process of biodiesel production itself needs to be optimized in order to make it an eco-friendly and high-performance energy resource. Within this scheme, development of low-cost and reusable heterogeneous catalysts has received much attention. Mesoporous silica materials with the characteristics of having a high surface area and being modifiable, tunable, and chemical/thermally stable have emerged as potential solid support of powerful catalysts in biodiesel production. This review highlights the latest updates on mesoporous silica modifications including acidic, basic, enzyme, and bifunctional catalysts derived from varied functionalization. In addition, the future outlook for progression is also discussed in detail.","PeriodicalId":9755,"journal":{"name":"ChemEngineering","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mesoporous Silica-Based Catalysts for Biodiesel Production: A Review\",\"authors\":\"I. Fatimah, G. Fadillah, S. Sagadevan, W. Oh, K. L. Ameta\",\"doi\":\"10.3390/chemengineering7030056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High demand for energy consumption forced the exploration of renewable energy resources, and in this context, biodiesel has received intensive attention. The process of biodiesel production itself needs to be optimized in order to make it an eco-friendly and high-performance energy resource. Within this scheme, development of low-cost and reusable heterogeneous catalysts has received much attention. Mesoporous silica materials with the characteristics of having a high surface area and being modifiable, tunable, and chemical/thermally stable have emerged as potential solid support of powerful catalysts in biodiesel production. This review highlights the latest updates on mesoporous silica modifications including acidic, basic, enzyme, and bifunctional catalysts derived from varied functionalization. In addition, the future outlook for progression is also discussed in detail.\",\"PeriodicalId\":9755,\"journal\":{\"name\":\"ChemEngineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemEngineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/chemengineering7030056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/chemengineering7030056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 3

摘要

对能源消耗的高需求迫使人们探索可再生能源,在这种背景下,生物柴油受到了广泛关注。生物柴油生产过程本身需要优化,使其成为一种环保、高性能的能源。在该方案中,开发低成本且可重复使用的多相催化剂受到了广泛关注。中孔二氧化硅材料具有高表面积、可改性、可调和化学/热稳定的特点,已成为生物柴油生产中强大催化剂的潜在固体载体。这篇综述重点介绍了介孔二氧化硅改性的最新进展,包括从各种功能化衍生的酸性、碱性、酶和双功能催化剂。此外,还详细讨论了未来的发展前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mesoporous Silica-Based Catalysts for Biodiesel Production: A Review
High demand for energy consumption forced the exploration of renewable energy resources, and in this context, biodiesel has received intensive attention. The process of biodiesel production itself needs to be optimized in order to make it an eco-friendly and high-performance energy resource. Within this scheme, development of low-cost and reusable heterogeneous catalysts has received much attention. Mesoporous silica materials with the characteristics of having a high surface area and being modifiable, tunable, and chemical/thermally stable have emerged as potential solid support of powerful catalysts in biodiesel production. This review highlights the latest updates on mesoporous silica modifications including acidic, basic, enzyme, and bifunctional catalysts derived from varied functionalization. In addition, the future outlook for progression is also discussed in detail.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemEngineering
ChemEngineering Engineering-Engineering (all)
CiteScore
4.00
自引率
4.00%
发文量
88
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信