Sierpiński垫圈作为非各向同性Markov链的Martin边界

IF 1.1 4区 数学 Q1 MATHEMATICS
Marc Kessebohmer, Tony Samuel, K. Sender
{"title":"Sierpiński垫圈作为非各向同性Markov链的Martin边界","authors":"Marc Kessebohmer, Tony Samuel, K. Sender","doi":"10.4171/JFG/86","DOIUrl":null,"url":null,"abstract":"In 2012 Lau and Ngai, motivated by the work of Denker and Sato, gave an example of an isotropic Markov chain on the set of finite words over a three letter alphabet, whose Martin boundary is homeomorphic to the Sierpinski gasket. Here, we extend the results of Lau and Ngai to a class of non-isotropic Markov chains. We determine the Martin boundary and show that the minimal Martin boundary is a proper subset of the Martin boundary. In addition, we give a description of the set of harmonic functions.","PeriodicalId":48484,"journal":{"name":"Journal of Fractal Geometry","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2017-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Sierpiński gasket as the Martin boundary of a non-isotropic Markov chain\",\"authors\":\"Marc Kessebohmer, Tony Samuel, K. Sender\",\"doi\":\"10.4171/JFG/86\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2012 Lau and Ngai, motivated by the work of Denker and Sato, gave an example of an isotropic Markov chain on the set of finite words over a three letter alphabet, whose Martin boundary is homeomorphic to the Sierpinski gasket. Here, we extend the results of Lau and Ngai to a class of non-isotropic Markov chains. We determine the Martin boundary and show that the minimal Martin boundary is a proper subset of the Martin boundary. In addition, we give a description of the set of harmonic functions.\",\"PeriodicalId\":48484,\"journal\":{\"name\":\"Journal of Fractal Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2017-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fractal Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/JFG/86\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fractal Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JFG/86","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

2012年,在Denker和Sato工作的推动下,Lau和Ngai给出了一个三字母字母表上有限词集上的各向同性马尔可夫链的例子,其Martin边界与Sierpinski垫圈同胚。在这里,我们将Lau和Ngai的结果推广到一类非各向同性马尔可夫链。我们确定了Martin边界,并证明了最小Martin边界是Martin边界的一个子集。此外,我们还描述了调和函数的集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Sierpiński gasket as the Martin boundary of a non-isotropic Markov chain
In 2012 Lau and Ngai, motivated by the work of Denker and Sato, gave an example of an isotropic Markov chain on the set of finite words over a three letter alphabet, whose Martin boundary is homeomorphic to the Sierpinski gasket. Here, we extend the results of Lau and Ngai to a class of non-isotropic Markov chains. We determine the Martin boundary and show that the minimal Martin boundary is a proper subset of the Martin boundary. In addition, we give a description of the set of harmonic functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信