二函数的均值不等式

Pub Date : 2023-03-01 DOI:10.1007/s10476-023-0206-6
H. Alzer, M. K. Kwong
{"title":"二函数的均值不等式","authors":"H. Alzer,&nbsp;M. K. Kwong","doi":"10.1007/s10476-023-0206-6","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>ψ</i> be the digamma function and let <i>L</i>(<i>a,b</i>) = (<i>b</i> − <i>a</i>)/log(<i>b</i>/<i>a</i>) be the logarithmic mean of <i>a</i> and <i>b</i>. We prove that the inequality </p><div><div><span>$$\\left( * \\right)\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,{\\kern 1pt} \\left( {b - a} \\right)\\psi \\left( {\\sqrt {ab} } \\right) &lt; \\left( {L\\left( {a,b} \\right) - a} \\right)\\psi \\left( a \\right) + \\left( {b - L\\left( {a,b} \\right)} \\right)\\psi \\left( b \\right)$$</span></div></div><p> holds for all real numbers <i>a</i> and <i>b</i> with <i>b</i> &gt; <i>a</i> ≥ <i>α</i><sub>0</sub>. Here, <i>α</i><sub>0</sub> ≈ 0.56155 is the only positive solution of </p><div><div><span>$$5{\\psi ^\\prime }\\left( x \\right) + 3x{\\psi ^{\\prime \\prime }}\\left( x \\right) = 0.$$</span></div></div><p> The constant lower bound <i>α</i><sub>0</sub> is best possible. This refines a result of Chu, Zhang and Tang, who showed that (*) is valid for <i>b</i> &gt; <i>a</i> ≥ 2. Moreover, we prove that the following companion to (*) holds for all <i>a</i> and <i>b</i> with <i>b</i> &gt; <i>a</i> &gt; 0, </p><div><div><span>$$\\left( {L\\left( {a,b} \\right) - a} \\right)\\psi \\left( a \\right) + \\left( {b - L\\left( {a,b} \\right)} \\right)\\psi \\left( b \\right) &lt; \\left( {b - a} \\right)\\psi \\left( {{{a + b} \\over 2}} \\right).$$</span></div></div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mean Value Inequalities for the Digamma Function\",\"authors\":\"H. Alzer,&nbsp;M. K. Kwong\",\"doi\":\"10.1007/s10476-023-0206-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>ψ</i> be the digamma function and let <i>L</i>(<i>a,b</i>) = (<i>b</i> − <i>a</i>)/log(<i>b</i>/<i>a</i>) be the logarithmic mean of <i>a</i> and <i>b</i>. We prove that the inequality </p><div><div><span>$$\\\\left( * \\\\right)\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,{\\\\kern 1pt} \\\\left( {b - a} \\\\right)\\\\psi \\\\left( {\\\\sqrt {ab} } \\\\right) &lt; \\\\left( {L\\\\left( {a,b} \\\\right) - a} \\\\right)\\\\psi \\\\left( a \\\\right) + \\\\left( {b - L\\\\left( {a,b} \\\\right)} \\\\right)\\\\psi \\\\left( b \\\\right)$$</span></div></div><p> holds for all real numbers <i>a</i> and <i>b</i> with <i>b</i> &gt; <i>a</i> ≥ <i>α</i><sub>0</sub>. Here, <i>α</i><sub>0</sub> ≈ 0.56155 is the only positive solution of </p><div><div><span>$$5{\\\\psi ^\\\\prime }\\\\left( x \\\\right) + 3x{\\\\psi ^{\\\\prime \\\\prime }}\\\\left( x \\\\right) = 0.$$</span></div></div><p> The constant lower bound <i>α</i><sub>0</sub> is best possible. This refines a result of Chu, Zhang and Tang, who showed that (*) is valid for <i>b</i> &gt; <i>a</i> ≥ 2. Moreover, we prove that the following companion to (*) holds for all <i>a</i> and <i>b</i> with <i>b</i> &gt; <i>a</i> &gt; 0, </p><div><div><span>$$\\\\left( {L\\\\left( {a,b} \\\\right) - a} \\\\right)\\\\psi \\\\left( a \\\\right) + \\\\left( {b - L\\\\left( {a,b} \\\\right)} \\\\right)\\\\psi \\\\left( b \\\\right) &lt; \\\\left( {b - a} \\\\right)\\\\psi \\\\left( {{{a + b} \\\\over 2}} \\\\right).$$</span></div></div></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-023-0206-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0206-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设ψ为digamma函数,设L(a,b)=(b−a)/log(b/a)为a和b的对数平均值;\left({L\left({a,b}\right)-a}\right\psi\left;a≥α0。这里,α0≈0.56155是$$5{\psi^\prime}\left(x\right)+3x{\pisi^{\prime)}\lift(x\ right)=0的唯一正解。$$常数下界α0是最可能的。这改进了Chu、Zhang和Tang的结果,他们证明(*)对于b>;a≥2。此外,我们证明了(*)的以下伴随对所有a和b都成立,其中b>;a>;0,$$\left({L\left({a,b}\right)-a}\right\psi\left(a\right)+\left;\left({b-a}\right)\psi\left({{a+b}\over 2}}\right.)$$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Mean Value Inequalities for the Digamma Function

Let ψ be the digamma function and let L(a,b) = (ba)/log(b/a) be the logarithmic mean of a and b. We prove that the inequality

$$\left( * \right)\,\,\,\,\,\,\,\,\,\,\,\,{\kern 1pt} \left( {b - a} \right)\psi \left( {\sqrt {ab} } \right) < \left( {L\left( {a,b} \right) - a} \right)\psi \left( a \right) + \left( {b - L\left( {a,b} \right)} \right)\psi \left( b \right)$$

holds for all real numbers a and b with b > aα0. Here, α0 ≈ 0.56155 is the only positive solution of

$$5{\psi ^\prime }\left( x \right) + 3x{\psi ^{\prime \prime }}\left( x \right) = 0.$$

The constant lower bound α0 is best possible. This refines a result of Chu, Zhang and Tang, who showed that (*) is valid for b > a ≥ 2. Moreover, we prove that the following companion to (*) holds for all a and b with b > a > 0,

$$\left( {L\left( {a,b} \right) - a} \right)\psi \left( a \right) + \left( {b - L\left( {a,b} \right)} \right)\psi \left( b \right) < \left( {b - a} \right)\psi \left( {{{a + b} \over 2}} \right).$$
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信