{"title":"二函数的均值不等式","authors":"H. Alzer, M. K. Kwong","doi":"10.1007/s10476-023-0206-6","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>ψ</i> be the digamma function and let <i>L</i>(<i>a,b</i>) = (<i>b</i> − <i>a</i>)/log(<i>b</i>/<i>a</i>) be the logarithmic mean of <i>a</i> and <i>b</i>. We prove that the inequality </p><div><div><span>$$\\left( * \\right)\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,{\\kern 1pt} \\left( {b - a} \\right)\\psi \\left( {\\sqrt {ab} } \\right) < \\left( {L\\left( {a,b} \\right) - a} \\right)\\psi \\left( a \\right) + \\left( {b - L\\left( {a,b} \\right)} \\right)\\psi \\left( b \\right)$$</span></div></div><p> holds for all real numbers <i>a</i> and <i>b</i> with <i>b</i> > <i>a</i> ≥ <i>α</i><sub>0</sub>. Here, <i>α</i><sub>0</sub> ≈ 0.56155 is the only positive solution of </p><div><div><span>$$5{\\psi ^\\prime }\\left( x \\right) + 3x{\\psi ^{\\prime \\prime }}\\left( x \\right) = 0.$$</span></div></div><p> The constant lower bound <i>α</i><sub>0</sub> is best possible. This refines a result of Chu, Zhang and Tang, who showed that (*) is valid for <i>b</i> > <i>a</i> ≥ 2. Moreover, we prove that the following companion to (*) holds for all <i>a</i> and <i>b</i> with <i>b</i> > <i>a</i> > 0, </p><div><div><span>$$\\left( {L\\left( {a,b} \\right) - a} \\right)\\psi \\left( a \\right) + \\left( {b - L\\left( {a,b} \\right)} \\right)\\psi \\left( b \\right) < \\left( {b - a} \\right)\\psi \\left( {{{a + b} \\over 2}} \\right).$$</span></div></div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mean Value Inequalities for the Digamma Function\",\"authors\":\"H. Alzer, M. K. Kwong\",\"doi\":\"10.1007/s10476-023-0206-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>ψ</i> be the digamma function and let <i>L</i>(<i>a,b</i>) = (<i>b</i> − <i>a</i>)/log(<i>b</i>/<i>a</i>) be the logarithmic mean of <i>a</i> and <i>b</i>. We prove that the inequality </p><div><div><span>$$\\\\left( * \\\\right)\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,{\\\\kern 1pt} \\\\left( {b - a} \\\\right)\\\\psi \\\\left( {\\\\sqrt {ab} } \\\\right) < \\\\left( {L\\\\left( {a,b} \\\\right) - a} \\\\right)\\\\psi \\\\left( a \\\\right) + \\\\left( {b - L\\\\left( {a,b} \\\\right)} \\\\right)\\\\psi \\\\left( b \\\\right)$$</span></div></div><p> holds for all real numbers <i>a</i> and <i>b</i> with <i>b</i> > <i>a</i> ≥ <i>α</i><sub>0</sub>. Here, <i>α</i><sub>0</sub> ≈ 0.56155 is the only positive solution of </p><div><div><span>$$5{\\\\psi ^\\\\prime }\\\\left( x \\\\right) + 3x{\\\\psi ^{\\\\prime \\\\prime }}\\\\left( x \\\\right) = 0.$$</span></div></div><p> The constant lower bound <i>α</i><sub>0</sub> is best possible. This refines a result of Chu, Zhang and Tang, who showed that (*) is valid for <i>b</i> > <i>a</i> ≥ 2. Moreover, we prove that the following companion to (*) holds for all <i>a</i> and <i>b</i> with <i>b</i> > <i>a</i> > 0, </p><div><div><span>$$\\\\left( {L\\\\left( {a,b} \\\\right) - a} \\\\right)\\\\psi \\\\left( a \\\\right) + \\\\left( {b - L\\\\left( {a,b} \\\\right)} \\\\right)\\\\psi \\\\left( b \\\\right) < \\\\left( {b - a} \\\\right)\\\\psi \\\\left( {{{a + b} \\\\over 2}} \\\\right).$$</span></div></div></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-023-0206-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0206-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
holds for all real numbers a and b with b > a ≥ α0. Here, α0 ≈ 0.56155 is the only positive solution of
$$5{\psi ^\prime }\left( x \right) + 3x{\psi ^{\prime \prime }}\left( x \right) = 0.$$
The constant lower bound α0 is best possible. This refines a result of Chu, Zhang and Tang, who showed that (*) is valid for b > a ≥ 2. Moreover, we prove that the following companion to (*) holds for all a and b with b > a > 0,