一些有趣的多值逻辑的规范化

IF 0.6 Q2 LOGIC
Nils Kürbis, Y. Petrukhin
{"title":"一些有趣的多值逻辑的规范化","authors":"Nils Kürbis, Y. Petrukhin","doi":"10.12775/llp.2021.009","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a set of quite interesting threeand four-valued logics and prove normalisation theorem for their natural deduction formulations. Among the logics in question are the Logic of Paradox, First Degree Entailment, Strong Kleene logic, and some of their implicative extensions, including RM3 and RM3 . Also, we present a detailed version of Prawitz’s proof of Nelson’s logic N4 and its extension by intuitionist negation.","PeriodicalId":43501,"journal":{"name":"Logic and Logical Philosophy","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Normalisation for Some Quite Interesting Many-Valued Logics\",\"authors\":\"Nils Kürbis, Y. Petrukhin\",\"doi\":\"10.12775/llp.2021.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a set of quite interesting threeand four-valued logics and prove normalisation theorem for their natural deduction formulations. Among the logics in question are the Logic of Paradox, First Degree Entailment, Strong Kleene logic, and some of their implicative extensions, including RM3 and RM3 . Also, we present a detailed version of Prawitz’s proof of Nelson’s logic N4 and its extension by intuitionist negation.\",\"PeriodicalId\":43501,\"journal\":{\"name\":\"Logic and Logical Philosophy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Logic and Logical Philosophy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12775/llp.2021.009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logic and Logical Philosophy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/llp.2021.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们考虑了一组非常有趣的三值逻辑和四值逻辑,并证明了它们的自然演绎公式的归一化定理。在所讨论的逻辑中有悖论逻辑、一阶纠缠逻辑、强Kleene逻辑,以及它们的一些隐含扩展,包括RM3和RM3。此外,我们还提出了Prawitz对Nelson逻辑N4的证明及其直觉否定的扩展的详细版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Normalisation for Some Quite Interesting Many-Valued Logics
In this paper, we consider a set of quite interesting threeand four-valued logics and prove normalisation theorem for their natural deduction formulations. Among the logics in question are the Logic of Paradox, First Degree Entailment, Strong Kleene logic, and some of their implicative extensions, including RM3 and RM3 . Also, we present a detailed version of Prawitz’s proof of Nelson’s logic N4 and its extension by intuitionist negation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
40.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信