利用Sentinel-2图像时间序列自动提取珊瑚礁的框架

IF 2 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Qizhi Zhuang, Jian Zhang, Liang Cheng, Hui Chen, Yanruo Song, Song Chen, Sensen Chu, Shengkun Dongye, Manchun Li
{"title":"利用Sentinel-2图像时间序列自动提取珊瑚礁的框架","authors":"Qizhi Zhuang, Jian Zhang, Liang Cheng, Hui Chen, Yanruo Song, Song Chen, Sensen Chu, Shengkun Dongye, Manchun Li","doi":"10.1080/01490419.2022.2051648","DOIUrl":null,"url":null,"abstract":"Abstract Using supervised and unsupervised classification on a single image to extract coral reef extent results in missing data and wrong extraction results. To improve the accuracy of coral reef extraction, this study proposes a novel technical framework for automatic coral reef extraction based on an image filtering strategy and spatiotemporal similarity measurements of pixel-level Sentinel-2 image time series. This method was applied to the Anda Reef, Daxian Reef, and Nanhua Reef, China, using 1464 Sentinel-2 images obtained from 2015–2020. Sentinel-2 images were automatically selected considering space, time, cloud cover, and image entropy after atmospheric correction. With the binary classification measurement standard using the digitization coral reef results of the Sentinel-2 images as the true value, the time series established by the modified normalized difference water index demonstrated high robustness and accuracy. Analyzing the time series curves of the coral reef and deep water verified that the spatiotemporal similarity measurement of this framework can stably extract the boundaries of the coral reef.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Framework for Automatic Coral Reef Extraction Using Sentinel-2 Image Time Series\",\"authors\":\"Qizhi Zhuang, Jian Zhang, Liang Cheng, Hui Chen, Yanruo Song, Song Chen, Sensen Chu, Shengkun Dongye, Manchun Li\",\"doi\":\"10.1080/01490419.2022.2051648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Using supervised and unsupervised classification on a single image to extract coral reef extent results in missing data and wrong extraction results. To improve the accuracy of coral reef extraction, this study proposes a novel technical framework for automatic coral reef extraction based on an image filtering strategy and spatiotemporal similarity measurements of pixel-level Sentinel-2 image time series. This method was applied to the Anda Reef, Daxian Reef, and Nanhua Reef, China, using 1464 Sentinel-2 images obtained from 2015–2020. Sentinel-2 images were automatically selected considering space, time, cloud cover, and image entropy after atmospheric correction. With the binary classification measurement standard using the digitization coral reef results of the Sentinel-2 images as the true value, the time series established by the modified normalized difference water index demonstrated high robustness and accuracy. Analyzing the time series curves of the coral reef and deep water verified that the spatiotemporal similarity measurement of this framework can stably extract the boundaries of the coral reef.\",\"PeriodicalId\":49884,\"journal\":{\"name\":\"Marine Geodesy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Geodesy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/01490419.2022.2051648\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/01490419.2022.2051648","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要在单个图像上使用有监督和无监督分类来提取珊瑚礁范围,导致数据丢失和提取结果错误。为了提高珊瑚礁提取的准确性,本研究基于图像滤波策略和像素级Sentinel-2图像时间序列的时空相似性测量,提出了一种新的珊瑚礁自动提取技术框架。该方法应用于中国安达礁、大仙礁和南华礁,使用了2015年至2020年获得的1464张Sentinel-2图像。Sentinel-2图像是在考虑空间、时间、云量和大气校正后的图像熵的情况下自动选择的。采用以Sentinel-2图像的数字化珊瑚礁结果为真值的二元分类测量标准,通过修正的归一化差分水指数建立的时间序列具有较高的稳健性和准确性。通过对珊瑚礁和深水的时间序列曲线的分析,验证了该框架的时空相似性测量可以稳定地提取珊瑚礁的边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Framework for Automatic Coral Reef Extraction Using Sentinel-2 Image Time Series
Abstract Using supervised and unsupervised classification on a single image to extract coral reef extent results in missing data and wrong extraction results. To improve the accuracy of coral reef extraction, this study proposes a novel technical framework for automatic coral reef extraction based on an image filtering strategy and spatiotemporal similarity measurements of pixel-level Sentinel-2 image time series. This method was applied to the Anda Reef, Daxian Reef, and Nanhua Reef, China, using 1464 Sentinel-2 images obtained from 2015–2020. Sentinel-2 images were automatically selected considering space, time, cloud cover, and image entropy after atmospheric correction. With the binary classification measurement standard using the digitization coral reef results of the Sentinel-2 images as the true value, the time series established by the modified normalized difference water index demonstrated high robustness and accuracy. Analyzing the time series curves of the coral reef and deep water verified that the spatiotemporal similarity measurement of this framework can stably extract the boundaries of the coral reef.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Marine Geodesy
Marine Geodesy 地学-地球化学与地球物理
CiteScore
4.10
自引率
6.20%
发文量
27
审稿时长
>12 weeks
期刊介绍: The aim of Marine Geodesy is to stimulate progress in ocean surveys, mapping, and remote sensing by promoting problem-oriented research in the marine and coastal environment. The journal will consider articles on the following topics: topography and mapping; satellite altimetry; bathymetry; positioning; precise navigation; boundary demarcation and determination; tsunamis; plate/tectonics; geoid determination; hydrographic and oceanographic observations; acoustics and space instrumentation; ground truth; system calibration and validation; geographic information systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信