yangian中Bethe子代数的厄米性质和谱的简单性

Pub Date : 2023-04-13 DOI:10.1134/S0016266322040098
I. A. Mashanova-Golikova
{"title":"yangian中Bethe子代数的厄米性质和谱的简单性","authors":"I. A. Mashanova-Golikova","doi":"10.1134/S0016266322040098","DOIUrl":null,"url":null,"abstract":"<p> The image of the Bethe subalgebra <span>\\(B(C)\\)</span> in the tensor product of representations of the Yangian <span>\\(Y(\\mathfrak{gl}_n)\\)</span> contains the full set of Hamiltonians of the Heisenberg magnet chain XXX. The main problem in the XXX integrable system is the diagonalization of the operators by which the elements of Bethe subalgebras act on the corresponding representations of the Yangian. The standard approach is the Bethe ansatz. As the first step toward solving this problem, we want to show that the eigenvalues of these operators have multiplicity 1. In this work we obtained several new results on the simplicity of spectra of Bethe subalgebras in Kirillov–Reshetikhin modules in the case of <span>\\(Y(\\mathfrak{g})\\)</span>, where <span>\\(\\mathfrak{g}\\)</span> is a simple Lie algebra. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hermitian Property and the Simplicity of Spectrum of Bethe Subalgebras in Yangians\",\"authors\":\"I. A. Mashanova-Golikova\",\"doi\":\"10.1134/S0016266322040098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> The image of the Bethe subalgebra <span>\\\\(B(C)\\\\)</span> in the tensor product of representations of the Yangian <span>\\\\(Y(\\\\mathfrak{gl}_n)\\\\)</span> contains the full set of Hamiltonians of the Heisenberg magnet chain XXX. The main problem in the XXX integrable system is the diagonalization of the operators by which the elements of Bethe subalgebras act on the corresponding representations of the Yangian. The standard approach is the Bethe ansatz. As the first step toward solving this problem, we want to show that the eigenvalues of these operators have multiplicity 1. In this work we obtained several new results on the simplicity of spectra of Bethe subalgebras in Kirillov–Reshetikhin modules in the case of <span>\\\\(Y(\\\\mathfrak{g})\\\\)</span>, where <span>\\\\(\\\\mathfrak{g}\\\\)</span> is a simple Lie algebra. </p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016266322040098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266322040098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

贝特子代数的像 \(B(C)\) Yangian表示的张量积 \(Y(\mathfrak{gl}_n)\) 包含海森堡磁链XXX的全套哈密顿量。XXX可积系统的主要问题是贝特子代数的元作用于相应的延延表示的算子的对角化问题。标准的方法是Bethe ansatz。作为解决这个问题的第一步,我们要证明这些算子的特征值具有多重性1。在Kirillov-Reshetikhin模中,我们得到了关于Bethe子代数谱的简单性的几个新结果 \(Y(\mathfrak{g})\),其中 \(\mathfrak{g}\) 是一个简单的李代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Hermitian Property and the Simplicity of Spectrum of Bethe Subalgebras in Yangians

The image of the Bethe subalgebra \(B(C)\) in the tensor product of representations of the Yangian \(Y(\mathfrak{gl}_n)\) contains the full set of Hamiltonians of the Heisenberg magnet chain XXX. The main problem in the XXX integrable system is the diagonalization of the operators by which the elements of Bethe subalgebras act on the corresponding representations of the Yangian. The standard approach is the Bethe ansatz. As the first step toward solving this problem, we want to show that the eigenvalues of these operators have multiplicity 1. In this work we obtained several new results on the simplicity of spectra of Bethe subalgebras in Kirillov–Reshetikhin modules in the case of \(Y(\mathfrak{g})\), where \(\mathfrak{g}\) is a simple Lie algebra.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信