系数无界的Fokker-Planck-Kolmogorov方程的叠加原理

IF 0.6 4区 数学 Q3 MATHEMATICS
T. I. Krasovitskii, S. V. Shaposhnikov
{"title":"系数无界的Fokker-Planck-Kolmogorov方程的叠加原理","authors":"T. I. Krasovitskii,&nbsp;S. V. Shaposhnikov","doi":"10.1134/S0016266322040062","DOIUrl":null,"url":null,"abstract":"<p> The superposition principle delivers a probabilistic representation of a solution <span>\\(\\{\\mu_t\\}_{t\\in[0, T]}\\)</span> of the Fokker–Planck–Kolmogorov equation <span>\\(\\partial_t\\mu_t=L^{*}\\mu_t\\)</span> in terms of a solution <span>\\(P\\)</span> of the martingale problem with operator <span>\\(L\\)</span>. We generalize the superposition principle to the case of equations on a domain, examine the transformation of the measure <span>\\(P\\)</span> and the operator <span>\\(L\\)</span> under a change of variables, and obtain new conditions for the validity of the superposition principle under the assumption of the existence of a Lyapunov function for the unbounded part of the drift coefficient. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":"56 4","pages":"282 - 298"},"PeriodicalIF":0.6000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superposition Principle for the Fokker–Planck–Kolmogorov Equations with Unbounded Coefficients\",\"authors\":\"T. I. Krasovitskii,&nbsp;S. V. Shaposhnikov\",\"doi\":\"10.1134/S0016266322040062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> The superposition principle delivers a probabilistic representation of a solution <span>\\\\(\\\\{\\\\mu_t\\\\}_{t\\\\in[0, T]}\\\\)</span> of the Fokker–Planck–Kolmogorov equation <span>\\\\(\\\\partial_t\\\\mu_t=L^{*}\\\\mu_t\\\\)</span> in terms of a solution <span>\\\\(P\\\\)</span> of the martingale problem with operator <span>\\\\(L\\\\)</span>. We generalize the superposition principle to the case of equations on a domain, examine the transformation of the measure <span>\\\\(P\\\\)</span> and the operator <span>\\\\(L\\\\)</span> under a change of variables, and obtain new conditions for the validity of the superposition principle under the assumption of the existence of a Lyapunov function for the unbounded part of the drift coefficient. </p>\",\"PeriodicalId\":575,\"journal\":{\"name\":\"Functional Analysis and Its Applications\",\"volume\":\"56 4\",\"pages\":\"282 - 298\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Analysis and Its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016266322040062\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266322040062","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

叠加原理将Fokker-Planck-Kolmogorov方程\(\partial_t\mu_t=L^{*}\mu_t\)的解\(\{\mu_t\}_{t\in[0, T]}\)的概率表示为具有算子\(L\)的鞅问题的解\(P\)。我们将叠加原理推广到定义域上方程的情况,研究了变变量下测度\(P\)和算子\(L\)的变换,并在漂移系数无界部分存在Lyapunov函数的假设下,得到了叠加原理成立的新条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Superposition Principle for the Fokker–Planck–Kolmogorov Equations with Unbounded Coefficients

The superposition principle delivers a probabilistic representation of a solution \(\{\mu_t\}_{t\in[0, T]}\) of the Fokker–Planck–Kolmogorov equation \(\partial_t\mu_t=L^{*}\mu_t\) in terms of a solution \(P\) of the martingale problem with operator \(L\). We generalize the superposition principle to the case of equations on a domain, examine the transformation of the measure \(P\) and the operator \(L\) under a change of variables, and obtain new conditions for the validity of the superposition principle under the assumption of the existence of a Lyapunov function for the unbounded part of the drift coefficient.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信