P. A. Storozhenko, K. D. Magdeev, A. A. Grachev, V. I. Shiryaev
{"title":"直接合成有机锡化合物的催化剂,第三部分:碳官能化有机卤化物与金属锡的反应","authors":"P. A. Storozhenko, K. D. Magdeev, A. A. Grachev, V. I. Shiryaev","doi":"10.1134/S2070050422030047","DOIUrl":null,"url":null,"abstract":"<p>This work is the third and final part of a series of reviews devoted to the direct synthesis of organotin compounds. This part of the series considers the conditions of and results from the reaction between metallic tin and carbofunctional organohalides. The efficiency of catalysts and the prospects for direct synthesis in the production of carbofunctional organotin compounds are analyzed.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"14 3","pages":"298 - 313"},"PeriodicalIF":0.7000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catalysts in the Direct Synthesis of Organotin Compounds, Part III: Reactions between Carbofunctional Organohalides and Metallic Tin\",\"authors\":\"P. A. Storozhenko, K. D. Magdeev, A. A. Grachev, V. I. Shiryaev\",\"doi\":\"10.1134/S2070050422030047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work is the third and final part of a series of reviews devoted to the direct synthesis of organotin compounds. This part of the series considers the conditions of and results from the reaction between metallic tin and carbofunctional organohalides. The efficiency of catalysts and the prospects for direct synthesis in the production of carbofunctional organotin compounds are analyzed.</p>\",\"PeriodicalId\":507,\"journal\":{\"name\":\"Catalysis in Industry\",\"volume\":\"14 3\",\"pages\":\"298 - 313\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis in Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2070050422030047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis in Industry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2070050422030047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Catalysts in the Direct Synthesis of Organotin Compounds, Part III: Reactions between Carbofunctional Organohalides and Metallic Tin
This work is the third and final part of a series of reviews devoted to the direct synthesis of organotin compounds. This part of the series considers the conditions of and results from the reaction between metallic tin and carbofunctional organohalides. The efficiency of catalysts and the prospects for direct synthesis in the production of carbofunctional organotin compounds are analyzed.
期刊介绍:
The journal covers the following topical areas:
Analysis of specific industrial catalytic processes: Production and use of catalysts in branches of industry: chemical, petrochemical, oil-refining, pharmaceutical, organic synthesis, fuel-energetic industries, environment protection, biocatalysis; technology of industrial catalytic processes (generalization of practical experience, improvements, and modernization); technology of catalysts production, raw materials and equipment; control of catalysts quality; starting, reduction, passivation, discharge, storage of catalysts; catalytic reactors.Theoretical foundations of industrial catalysis and technologies: Research, studies, and concepts : search for and development of new catalysts and new types of supports, formation of active components, and mechanochemistry in catalysis; comprehensive studies of work-out catalysts and analysis of deactivation mechanisms; studies of the catalytic process at different scale levels (laboratory, pilot plant, industrial); kinetics of industrial and newly developed catalytic processes and development of kinetic models; nonlinear dynamics and nonlinear phenomena in catalysis: multiplicity of stationary states, stepwise changes in regimes, etc. Advances in catalysis: Catalysis and gas chemistry; catalysis and new energy technologies; biocatalysis; nanocatalysis; catalysis and new construction materials.History of the development of industrial catalysis.