{"title":"带选择的自然演绎中的结构规则","authors":"Greg Restall","doi":"10.18778/0138-0680.2023.6","DOIUrl":null,"url":null,"abstract":"Natural deduction with alternatives extends Gentzen–Prawitz-style natural deduction with a single structural addition: negatively signed assumptions, called alternatives. It is a mildly bilateralist, single-conclusion natural deduction proof system in which the connective rules are unmodified from the usual Prawitz introduction and elimination rules—the extension is purely structural. This framework is general: it can be used for (1) classical logic, (2) relevant logic without distribution, (3) affine logic, and (4) linear logic, keeping the connective rules fixed, and varying purely structural rules.The key result of this paper is that the two principles that introduce kinds of irrelevance to natural deduction proofs: (a) the rule of explosion (from a contradiction, anything follows); and (b) the structural rule of vacuous discharge; are shown to be two sides of a single coin, in the same way that they correspond to the structural rule of weakening in the sequent calculus. The paper also includes a discussion of assumption classes, and how they can play a role in treating additive connectives in substructural natural deduction.","PeriodicalId":38667,"journal":{"name":"Bulletin of the Section of Logic","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Structural Rules in Natural Deduction with Alternatives\",\"authors\":\"Greg Restall\",\"doi\":\"10.18778/0138-0680.2023.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural deduction with alternatives extends Gentzen–Prawitz-style natural deduction with a single structural addition: negatively signed assumptions, called alternatives. It is a mildly bilateralist, single-conclusion natural deduction proof system in which the connective rules are unmodified from the usual Prawitz introduction and elimination rules—the extension is purely structural. This framework is general: it can be used for (1) classical logic, (2) relevant logic without distribution, (3) affine logic, and (4) linear logic, keeping the connective rules fixed, and varying purely structural rules.The key result of this paper is that the two principles that introduce kinds of irrelevance to natural deduction proofs: (a) the rule of explosion (from a contradiction, anything follows); and (b) the structural rule of vacuous discharge; are shown to be two sides of a single coin, in the same way that they correspond to the structural rule of weakening in the sequent calculus. The paper also includes a discussion of assumption classes, and how they can play a role in treating additive connectives in substructural natural deduction.\",\"PeriodicalId\":38667,\"journal\":{\"name\":\"Bulletin of the Section of Logic\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Section of Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18778/0138-0680.2023.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Section of Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18778/0138-0680.2023.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Arts and Humanities","Score":null,"Total":0}
Structural Rules in Natural Deduction with Alternatives
Natural deduction with alternatives extends Gentzen–Prawitz-style natural deduction with a single structural addition: negatively signed assumptions, called alternatives. It is a mildly bilateralist, single-conclusion natural deduction proof system in which the connective rules are unmodified from the usual Prawitz introduction and elimination rules—the extension is purely structural. This framework is general: it can be used for (1) classical logic, (2) relevant logic without distribution, (3) affine logic, and (4) linear logic, keeping the connective rules fixed, and varying purely structural rules.The key result of this paper is that the two principles that introduce kinds of irrelevance to natural deduction proofs: (a) the rule of explosion (from a contradiction, anything follows); and (b) the structural rule of vacuous discharge; are shown to be two sides of a single coin, in the same way that they correspond to the structural rule of weakening in the sequent calculus. The paper also includes a discussion of assumption classes, and how they can play a role in treating additive connectives in substructural natural deduction.