一些仿射代数变种上Chebyshev自同态的动力学

IF 0.5 4区 数学 Q3 MATHEMATICS
Keisuke Uchimura
{"title":"一些仿射代数变种上Chebyshev自同态的动力学","authors":"Keisuke Uchimura","doi":"10.1215/21562261-10607402","DOIUrl":null,"url":null,"abstract":"Chebyshev polynomials in one variable are typical chaotic maps on the complex 1-space. Chebyshev endomorphisms f on the complex n-space A are also chaotic. The endomorphisms f induce mappings on the quotient space A/G, where G is the dihedral group of order 2(n+1). Using invariant theory we embed A/G as an affine subvariety X in the complex m-space. Then we have morphisms g on X. We study the chaotic properties of g when n = 2 and 3.","PeriodicalId":49149,"journal":{"name":"Kyoto Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of Chebyshev endomorphisms on some affine algebraic varieties\",\"authors\":\"Keisuke Uchimura\",\"doi\":\"10.1215/21562261-10607402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chebyshev polynomials in one variable are typical chaotic maps on the complex 1-space. Chebyshev endomorphisms f on the complex n-space A are also chaotic. The endomorphisms f induce mappings on the quotient space A/G, where G is the dihedral group of order 2(n+1). Using invariant theory we embed A/G as an affine subvariety X in the complex m-space. Then we have morphisms g on X. We study the chaotic properties of g when n = 2 and 3.\",\"PeriodicalId\":49149,\"journal\":{\"name\":\"Kyoto Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kyoto Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/21562261-10607402\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyoto Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-10607402","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

一元Chebyshev多项式是复1-空间上典型的混沌映射。复n空间A上的Chebyshev自同态f也是混沌的。自同态f在商空间A/G上诱导映射,其中G是2(n+1)阶的二面体群。利用不变量理论,我们将A/G作为仿射子变种X嵌入到复m空间中。然后我们在X上有态射g。我们研究了当n=2和n=3时g的混沌性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics of Chebyshev endomorphisms on some affine algebraic varieties
Chebyshev polynomials in one variable are typical chaotic maps on the complex 1-space. Chebyshev endomorphisms f on the complex n-space A are also chaotic. The endomorphisms f induce mappings on the quotient space A/G, where G is the dihedral group of order 2(n+1). Using invariant theory we embed A/G as an affine subvariety X in the complex m-space. Then we have morphisms g on X. We study the chaotic properties of g when n = 2 and 3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
16.70%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Kyoto Journal of Mathematics publishes original research papers at the forefront of pure mathematics, including surveys that contribute to advances in pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信