{"title":"用于检测网络积分过程中的聚集性变化的在线分数统计","authors":"Rui Zhang, Haoyun Wang, Yao Xie","doi":"10.1080/07474946.2022.2164307","DOIUrl":null,"url":null,"abstract":"Abstract We consider online monitoring of the network event data to detect local changes in a cluster when the affected data stream distribution shifts from one point process to another with different parameters. Specifically, we are interested in detecting a change point that causes a shift of the underlying data distribution that follows a multivariate Hawkes process with exponential decay temporal kernel, whereby the Hawkes process is considered to account for spatiotemporal correlation between observations. The proposed detection procedure is based on scan score statistics. We derive the asymptotic distribution of the statistic, which enables the self-normalizing property and facilitates the approximation of the instantaneous false alarm probability and the average run length. When detecting a change in the Hawkes process with nonvanishing self-excitation, the procedure does not require estimating the postchange network parameter while assuming the temporal decay parameter, which enjoys computational efficiency. We further present an efficient procedure to accurately determine the false discovery rate via importance sampling, as validated by numerical examples. Using simulated and real stock exchange data, we show the effectiveness of the proposed method in detecting change while enjoying computational efficiency.","PeriodicalId":48879,"journal":{"name":"Sequential Analysis-Design Methods and Applications","volume":"42 1","pages":"70 - 89"},"PeriodicalIF":0.6000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online score statistics for detecting clustered change in network point processes\",\"authors\":\"Rui Zhang, Haoyun Wang, Yao Xie\",\"doi\":\"10.1080/07474946.2022.2164307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider online monitoring of the network event data to detect local changes in a cluster when the affected data stream distribution shifts from one point process to another with different parameters. Specifically, we are interested in detecting a change point that causes a shift of the underlying data distribution that follows a multivariate Hawkes process with exponential decay temporal kernel, whereby the Hawkes process is considered to account for spatiotemporal correlation between observations. The proposed detection procedure is based on scan score statistics. We derive the asymptotic distribution of the statistic, which enables the self-normalizing property and facilitates the approximation of the instantaneous false alarm probability and the average run length. When detecting a change in the Hawkes process with nonvanishing self-excitation, the procedure does not require estimating the postchange network parameter while assuming the temporal decay parameter, which enjoys computational efficiency. We further present an efficient procedure to accurately determine the false discovery rate via importance sampling, as validated by numerical examples. Using simulated and real stock exchange data, we show the effectiveness of the proposed method in detecting change while enjoying computational efficiency.\",\"PeriodicalId\":48879,\"journal\":{\"name\":\"Sequential Analysis-Design Methods and Applications\",\"volume\":\"42 1\",\"pages\":\"70 - 89\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sequential Analysis-Design Methods and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/07474946.2022.2164307\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sequential Analysis-Design Methods and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07474946.2022.2164307","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Online score statistics for detecting clustered change in network point processes
Abstract We consider online monitoring of the network event data to detect local changes in a cluster when the affected data stream distribution shifts from one point process to another with different parameters. Specifically, we are interested in detecting a change point that causes a shift of the underlying data distribution that follows a multivariate Hawkes process with exponential decay temporal kernel, whereby the Hawkes process is considered to account for spatiotemporal correlation between observations. The proposed detection procedure is based on scan score statistics. We derive the asymptotic distribution of the statistic, which enables the self-normalizing property and facilitates the approximation of the instantaneous false alarm probability and the average run length. When detecting a change in the Hawkes process with nonvanishing self-excitation, the procedure does not require estimating the postchange network parameter while assuming the temporal decay parameter, which enjoys computational efficiency. We further present an efficient procedure to accurately determine the false discovery rate via importance sampling, as validated by numerical examples. Using simulated and real stock exchange data, we show the effectiveness of the proposed method in detecting change while enjoying computational efficiency.
期刊介绍:
The purpose of Sequential Analysis is to contribute to theoretical and applied aspects of sequential methodologies in all areas of statistical science. Published papers highlight the development of new and important sequential approaches.
Interdisciplinary articles that emphasize the methodology of practical value to applied researchers and statistical consultants are highly encouraged. Papers that cover contemporary areas of applications including animal abundance, bioequivalence, communication science, computer simulations, data mining, directional data, disease mapping, environmental sampling, genome, imaging, microarrays, networking, parallel processing, pest management, sonar detection, spatial statistics, tracking, and engineering are deemed especially important. Of particular value are expository review articles that critically synthesize broad-based statistical issues. Papers on case-studies are also considered. All papers are refereed.