α平面的反转与分形模式

IF 0.4 Q4 MATHEMATICS
Ö. Gelişgen, T. Ermiş
{"title":"α平面的反转与分形模式","authors":"Ö. Gelişgen, T. Ermiş","doi":"10.36890/iejg.1244520","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the alpha circle inversion by using alpha distance function instead of Euclidean distance in definition of classical inversion. We give some proporties of alpha circle inversion. Also this new transformation is applied to well known fractals. Then new fractal patterns are obtained. Moreover we generalize the method called circle inversion fractal be means of the alpha circle inversion. In alpha plane, we give a generalization of alpha circle inversion fractal by using the concept of star-shaped set inversion which is a generalization of circle inversion fractal.","PeriodicalId":43768,"journal":{"name":"International Electronic Journal of Geometry","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inversions and Fractal Patterns in Alpha Plane\",\"authors\":\"Ö. Gelişgen, T. Ermiş\",\"doi\":\"10.36890/iejg.1244520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce the alpha circle inversion by using alpha distance function instead of Euclidean distance in definition of classical inversion. We give some proporties of alpha circle inversion. Also this new transformation is applied to well known fractals. Then new fractal patterns are obtained. Moreover we generalize the method called circle inversion fractal be means of the alpha circle inversion. In alpha plane, we give a generalization of alpha circle inversion fractal by using the concept of star-shaped set inversion which is a generalization of circle inversion fractal.\",\"PeriodicalId\":43768,\"journal\":{\"name\":\"International Electronic Journal of Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36890/iejg.1244520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36890/iejg.1244520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了在经典反演的定义中,用α距离函数代替欧几里得距离进行α圆反演。我们给出了α圆反演的一些命题。这种新的变换也应用于众所周知的分形。然后得到新的分形图案。此外,我们还将圆反演分形的方法推广为阿尔法圆反演的方法。在α平面上,我们利用星形集反演的概念对α圆反演分形进行了推广,星形集反演是圆反演分形的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inversions and Fractal Patterns in Alpha Plane
In this paper, we introduce the alpha circle inversion by using alpha distance function instead of Euclidean distance in definition of classical inversion. We give some proporties of alpha circle inversion. Also this new transformation is applied to well known fractals. Then new fractal patterns are obtained. Moreover we generalize the method called circle inversion fractal be means of the alpha circle inversion. In alpha plane, we give a generalization of alpha circle inversion fractal by using the concept of star-shaped set inversion which is a generalization of circle inversion fractal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
14.30%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信