{"title":"复合材料层高硬度区取向对其耐磨性的影响","authors":"V. Peremitko, I. Kolomoyets","doi":"10.5604/01.3001.0015.4313","DOIUrl":null,"url":null,"abstract":"Purpose: Experimentally substantiate the influence of the orientation of zones of higher hardness on the wear mechanism of contact surfaces. Design/methodology/approach: Forming of variable composition within the working surfaces of parts is a common way to solve the problem of uneven wear. The tests were aimed at determining the characteristics of the layers surfaced with the orientation of the zones of high hardness. For this different tests and measurements were done. Before the test, samples of 45 steel were surfaced with a preliminary application of titanium carbide paste. Findings: As a result of researches it was found that different ways of the orientation of zones of higher hardness have different influences on the characteristics of a surface. The main conclusion is that the transverse orientation of such zones helps to increase the wear resistance of the surface and to save its original relief. Research limitations/implications: The roughness, wear resistance, zonal hardness, and relief of layers surfaced with the orientation of zones of higher hardness were studied. Practical implications: The results obtained are useful in the field of rolling production and mechanical engineering to avoid the uneven wear of parts and as a result to extend the term of their exploitation. Originality/value: In this paper the model concepts of wear process of surfaces with variable composition and measurements of characteristics of surface considering its local hardening are proposed.\n\n","PeriodicalId":8297,"journal":{"name":"Archives of materials science and engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Influence of orientation of zones of higher hardness of composite layers on their resistance to wear\",\"authors\":\"V. Peremitko, I. Kolomoyets\",\"doi\":\"10.5604/01.3001.0015.4313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose: Experimentally substantiate the influence of the orientation of zones of higher hardness on the wear mechanism of contact surfaces. Design/methodology/approach: Forming of variable composition within the working surfaces of parts is a common way to solve the problem of uneven wear. The tests were aimed at determining the characteristics of the layers surfaced with the orientation of the zones of high hardness. For this different tests and measurements were done. Before the test, samples of 45 steel were surfaced with a preliminary application of titanium carbide paste. Findings: As a result of researches it was found that different ways of the orientation of zones of higher hardness have different influences on the characteristics of a surface. The main conclusion is that the transverse orientation of such zones helps to increase the wear resistance of the surface and to save its original relief. Research limitations/implications: The roughness, wear resistance, zonal hardness, and relief of layers surfaced with the orientation of zones of higher hardness were studied. Practical implications: The results obtained are useful in the field of rolling production and mechanical engineering to avoid the uneven wear of parts and as a result to extend the term of their exploitation. Originality/value: In this paper the model concepts of wear process of surfaces with variable composition and measurements of characteristics of surface considering its local hardening are proposed.\\n\\n\",\"PeriodicalId\":8297,\"journal\":{\"name\":\"Archives of materials science and engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of materials science and engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5604/01.3001.0015.4313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of materials science and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0015.4313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
Influence of orientation of zones of higher hardness of composite layers on their resistance to wear
Purpose: Experimentally substantiate the influence of the orientation of zones of higher hardness on the wear mechanism of contact surfaces. Design/methodology/approach: Forming of variable composition within the working surfaces of parts is a common way to solve the problem of uneven wear. The tests were aimed at determining the characteristics of the layers surfaced with the orientation of the zones of high hardness. For this different tests and measurements were done. Before the test, samples of 45 steel were surfaced with a preliminary application of titanium carbide paste. Findings: As a result of researches it was found that different ways of the orientation of zones of higher hardness have different influences on the characteristics of a surface. The main conclusion is that the transverse orientation of such zones helps to increase the wear resistance of the surface and to save its original relief. Research limitations/implications: The roughness, wear resistance, zonal hardness, and relief of layers surfaced with the orientation of zones of higher hardness were studied. Practical implications: The results obtained are useful in the field of rolling production and mechanical engineering to avoid the uneven wear of parts and as a result to extend the term of their exploitation. Originality/value: In this paper the model concepts of wear process of surfaces with variable composition and measurements of characteristics of surface considering its local hardening are proposed.