基于拉普拉斯变换和迭代变分法的Winkler和Pasternak地基上各向同性矩形板的解析解

M. Sobamowo, O. Sadiq, S. Salawu
{"title":"基于拉普拉斯变换和迭代变分法的Winkler和Pasternak地基上各向同性矩形板的解析解","authors":"M. Sobamowo, O. Sadiq, S. Salawu","doi":"10.30538/psrp-easl2019.0027","DOIUrl":null,"url":null,"abstract":"Dynamic analysis of isotropic thin rectangular plate resting on two-parameter elastic foundations is investigated. The governing system is converted to system of nonlinear ordinary differential equation using Galerkin method of separation. The Ordinary differential equation is analyzed using hybrid method of Laplace transform and Variation of iteration Method. The accuracies of the analytical solutions obtained are verified with existing literature and confirmed in good agreement. Thereafter, the analytical solutions are used for parametric studies. From the results, it is observed that, increase in elastic foundation parameters increases the natural frequency. Increase in aspect ratios increases the natural frequency. It is expected that the present study will add value to the existing knowledge in the field of vibration.","PeriodicalId":11518,"journal":{"name":"Engineering and Applied Science Letters","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical solution of isotropic rectangular plates resting on Winkler and Pasternak foundations using Laplace transform and variation of iteration method\",\"authors\":\"M. Sobamowo, O. Sadiq, S. Salawu\",\"doi\":\"10.30538/psrp-easl2019.0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic analysis of isotropic thin rectangular plate resting on two-parameter elastic foundations is investigated. The governing system is converted to system of nonlinear ordinary differential equation using Galerkin method of separation. The Ordinary differential equation is analyzed using hybrid method of Laplace transform and Variation of iteration Method. The accuracies of the analytical solutions obtained are verified with existing literature and confirmed in good agreement. Thereafter, the analytical solutions are used for parametric studies. From the results, it is observed that, increase in elastic foundation parameters increases the natural frequency. Increase in aspect ratios increases the natural frequency. It is expected that the present study will add value to the existing knowledge in the field of vibration.\",\"PeriodicalId\":11518,\"journal\":{\"name\":\"Engineering and Applied Science Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering and Applied Science Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30538/psrp-easl2019.0027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering and Applied Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30538/psrp-easl2019.0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了双参数弹性地基上各向同性矩形薄板的动力分析。采用伽辽金分离法将控制系统转化为非线性常微分方程组。利用拉普拉斯变换和迭代变分法的混合方法对常微分方程进行了分析。所得解析解的准确性与现有文献进行了验证,并得到了良好的一致性。然后,将分析解用于参数研究。从结果中可以看出,弹性地基参数的增加会增加固有频率。纵横比的增加会增加固有频率。预计本研究将为振动领域的现有知识增加价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical solution of isotropic rectangular plates resting on Winkler and Pasternak foundations using Laplace transform and variation of iteration method
Dynamic analysis of isotropic thin rectangular plate resting on two-parameter elastic foundations is investigated. The governing system is converted to system of nonlinear ordinary differential equation using Galerkin method of separation. The Ordinary differential equation is analyzed using hybrid method of Laplace transform and Variation of iteration Method. The accuracies of the analytical solutions obtained are verified with existing literature and confirmed in good agreement. Thereafter, the analytical solutions are used for parametric studies. From the results, it is observed that, increase in elastic foundation parameters increases the natural frequency. Increase in aspect ratios increases the natural frequency. It is expected that the present study will add value to the existing knowledge in the field of vibration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信