超空间中的Radon变换和Dirac分布

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Al'i Guzm'an Ad'an, I. Sabadini, F. Sommen
{"title":"超空间中的Radon变换和Dirac分布","authors":"Al'i Guzm'an Ad'an, I. Sabadini, F. Sommen","doi":"10.1142/s0219530521500305","DOIUrl":null,"url":null,"abstract":"In this paper, we obtain a plane wave decomposition for the delta distribution in superspace, provided that the superdimension is not odd and negative. This decomposition allows for explicit inversion formulas for the super Radon transform in these cases. Moreover, we prove a more general Radon inversion formula valid for all possible integer values of the superdimension. The proof of this result comes along with the study of fractional powers of the super Laplacian, their fundamental solutions, and the plane wave decompositions of super Riesz kernels.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Radon transform and the Dirac delta distribution in superspace\",\"authors\":\"Al'i Guzm'an Ad'an, I. Sabadini, F. Sommen\",\"doi\":\"10.1142/s0219530521500305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we obtain a plane wave decomposition for the delta distribution in superspace, provided that the superdimension is not odd and negative. This decomposition allows for explicit inversion formulas for the super Radon transform in these cases. Moreover, we prove a more general Radon inversion formula valid for all possible integer values of the superdimension. The proof of this result comes along with the study of fractional powers of the super Laplacian, their fundamental solutions, and the plane wave decompositions of super Riesz kernels.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219530521500305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219530521500305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们得到了超空间中delta分布的平面波分解,条件是超维不是奇数和负的。在这些情况下,这种分解允许超Radon变换的显式反演公式。此外,我们还证明了一个更通用的Radon反演公式对超维的所有可能的整数值都有效。这一结果的证明伴随着对超拉普拉斯算子的分数次幂、它们的基本解以及超Riesz核的平面波分解的研究而来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Radon transform and the Dirac delta distribution in superspace
In this paper, we obtain a plane wave decomposition for the delta distribution in superspace, provided that the superdimension is not odd and negative. This decomposition allows for explicit inversion formulas for the super Radon transform in these cases. Moreover, we prove a more general Radon inversion formula valid for all possible integer values of the superdimension. The proof of this result comes along with the study of fractional powers of the super Laplacian, their fundamental solutions, and the plane wave decompositions of super Riesz kernels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信