基于多域物理模型的液压挖掘机轨迹控制系统研究*

IF 0.7 Q4 ENGINEERING, MECHANICAL
Zhen Zhang, Jingming Zhang, Nianning Luo
{"title":"基于多域物理模型的液压挖掘机轨迹控制系统研究*","authors":"Zhen Zhang, Jingming Zhang, Nianning Luo","doi":"10.13052/ijfp1439-9776.2337","DOIUrl":null,"url":null,"abstract":"Hydraulic excavators are complex mechatronics construction machinery with characteristics of multidiscipline intersection and multi-domain close coupling. To analyze the comprehensive property of its trajectory control system, a method of multi-system hybrid modeling and simulation based on MATLAB is proposed and described. In this paper, the multi-domain physical model of a medium-sized hydraulic excavator is established. The considered model is mainly comprised of four other subsystems: a machine system, a hydraulic system, a trajectory control system and a sensor system. Moreover, a fuzzy neural network (FNN) PID strategy is introduced to the trajectory control system to guarantee the accuracy of automatic operation. On the basis of the multi-domain physical model, typical simulation experiments for working patterns were performed to validate the performance of the FNNPID controller. Comparison results demonstrate that the precision and velocity response of the FNNPID controller is better than that of the PID with traditional algorithm. The tracking errors of the boom, the arm, the bucket and the swing are decreased by 3∘, 3.2∘, 5.5∘ and 7.5∘, respectively. Establishment of the multi-domain physical model offers technical means for optimization design and rapid modeling of the complex electromechanical system.","PeriodicalId":13977,"journal":{"name":"International Journal of Fluid Power","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study on Trajectory Control System of Hydraulic Excavators Based on Multi-Domain Physical Model*\",\"authors\":\"Zhen Zhang, Jingming Zhang, Nianning Luo\",\"doi\":\"10.13052/ijfp1439-9776.2337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydraulic excavators are complex mechatronics construction machinery with characteristics of multidiscipline intersection and multi-domain close coupling. To analyze the comprehensive property of its trajectory control system, a method of multi-system hybrid modeling and simulation based on MATLAB is proposed and described. In this paper, the multi-domain physical model of a medium-sized hydraulic excavator is established. The considered model is mainly comprised of four other subsystems: a machine system, a hydraulic system, a trajectory control system and a sensor system. Moreover, a fuzzy neural network (FNN) PID strategy is introduced to the trajectory control system to guarantee the accuracy of automatic operation. On the basis of the multi-domain physical model, typical simulation experiments for working patterns were performed to validate the performance of the FNNPID controller. Comparison results demonstrate that the precision and velocity response of the FNNPID controller is better than that of the PID with traditional algorithm. The tracking errors of the boom, the arm, the bucket and the swing are decreased by 3∘, 3.2∘, 5.5∘ and 7.5∘, respectively. Establishment of the multi-domain physical model offers technical means for optimization design and rapid modeling of the complex electromechanical system.\",\"PeriodicalId\":13977,\"journal\":{\"name\":\"International Journal of Fluid Power\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fluid Power\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/ijfp1439-9776.2337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fluid Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/ijfp1439-9776.2337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

液压挖掘机是一种复杂的机电一体化工程机械,具有多学科交叉、多领域紧密耦合的特点。为了分析其轨迹控制系统的综合性能,提出并描述了一种基于MATLAB的多系统混合建模与仿真方法。本文建立了中型液压挖掘机的多域物理模型。所考虑的模型主要由四个子系统组成:机器系统、液压系统、轨迹控制系统和传感器系统。此外,将模糊神经网络(FNN)PID策略引入轨迹控制系统,以保证自动操作的准确性。在多域物理模型的基础上,进行了典型的工作模式仿真实验,验证了FNNPID控制器的性能。比较结果表明,FNNPID控制器的精度和速度响应优于传统算法的PID控制器。动臂、斗杆、铲斗和回转的跟踪误差分别降低了3、3.2、5.5和7.5。多域物理模型的建立为复杂机电系统的优化设计和快速建模提供了技术手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study on Trajectory Control System of Hydraulic Excavators Based on Multi-Domain Physical Model*
Hydraulic excavators are complex mechatronics construction machinery with characteristics of multidiscipline intersection and multi-domain close coupling. To analyze the comprehensive property of its trajectory control system, a method of multi-system hybrid modeling and simulation based on MATLAB is proposed and described. In this paper, the multi-domain physical model of a medium-sized hydraulic excavator is established. The considered model is mainly comprised of four other subsystems: a machine system, a hydraulic system, a trajectory control system and a sensor system. Moreover, a fuzzy neural network (FNN) PID strategy is introduced to the trajectory control system to guarantee the accuracy of automatic operation. On the basis of the multi-domain physical model, typical simulation experiments for working patterns were performed to validate the performance of the FNNPID controller. Comparison results demonstrate that the precision and velocity response of the FNNPID controller is better than that of the PID with traditional algorithm. The tracking errors of the boom, the arm, the bucket and the swing are decreased by 3∘, 3.2∘, 5.5∘ and 7.5∘, respectively. Establishment of the multi-domain physical model offers technical means for optimization design and rapid modeling of the complex electromechanical system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Fluid Power
International Journal of Fluid Power ENGINEERING, MECHANICAL-
CiteScore
1.60
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信