二次有界上同与WWPD

IF 0.5 4区 数学 Q3 MATHEMATICS
M. Handel, L. Mosher
{"title":"二次有界上同与WWPD","authors":"M. Handel, L. Mosher","doi":"10.1215/21562261-2021-0017","DOIUrl":null,"url":null,"abstract":"Given a group acting on a Gromov hyperbolic space, Bestvina and Fujiwara introduced the WPD property --- weak proper discontinuity --- for studying the 2nd bounded cohomology of the group. We carry out a more general study of second bounded cohomology using a 'really' weak property discontinuity property known as WWPD that was introduced by Bestvina, Bromberg, and Fujiwara.","PeriodicalId":49149,"journal":{"name":"Kyoto Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Second bounded cohomology and WWPD\",\"authors\":\"M. Handel, L. Mosher\",\"doi\":\"10.1215/21562261-2021-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a group acting on a Gromov hyperbolic space, Bestvina and Fujiwara introduced the WPD property --- weak proper discontinuity --- for studying the 2nd bounded cohomology of the group. We carry out a more general study of second bounded cohomology using a 'really' weak property discontinuity property known as WWPD that was introduced by Bestvina, Bromberg, and Fujiwara.\",\"PeriodicalId\":49149,\"journal\":{\"name\":\"Kyoto Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kyoto Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/21562261-2021-0017\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyoto Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-2021-0017","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

给定一个作用在Gromov双曲空间上的群,Bestvina和Fujiwara引入了WPD性质——弱固有不连续性——来研究该群的第二个有界上同调。我们使用Bestvina、Bromberg和Fujiwara引入的“真正的”弱性质不连续性质WWPD,对第二有界上同调进行了更一般的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Second bounded cohomology and WWPD
Given a group acting on a Gromov hyperbolic space, Bestvina and Fujiwara introduced the WPD property --- weak proper discontinuity --- for studying the 2nd bounded cohomology of the group. We carry out a more general study of second bounded cohomology using a 'really' weak property discontinuity property known as WWPD that was introduced by Bestvina, Bromberg, and Fujiwara.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
16.70%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Kyoto Journal of Mathematics publishes original research papers at the forefront of pure mathematics, including surveys that contribute to advances in pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信