{"title":"广义加性模型中的可识别性约束","authors":"Alex Stringer","doi":"10.1002/cjs.11786","DOIUrl":null,"url":null,"abstract":"<p>Identifiability constraints are necessary for parameter estimation when fitting models with nonlinear covariate associations. The choice of constraint affects standard errors of the estimated curve. Centring constraints are often applied by default because they are thought to yield lowest standard errors out of any constraint, but this claim has not been investigated. We show that whether centring constraints are optimal depends on the response distribution and parameterization, and that for natural exponential family responses under the canonical parametrization, centring constraints are optimal only for Gaussian response.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":"52 2","pages":"461-476"},"PeriodicalIF":0.8000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.11786","citationCount":"0","resultStr":"{\"title\":\"Identifiability constraints in generalized additive models\",\"authors\":\"Alex Stringer\",\"doi\":\"10.1002/cjs.11786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Identifiability constraints are necessary for parameter estimation when fitting models with nonlinear covariate associations. The choice of constraint affects standard errors of the estimated curve. Centring constraints are often applied by default because they are thought to yield lowest standard errors out of any constraint, but this claim has not been investigated. We show that whether centring constraints are optimal depends on the response distribution and parameterization, and that for natural exponential family responses under the canonical parametrization, centring constraints are optimal only for Gaussian response.</p>\",\"PeriodicalId\":55281,\"journal\":{\"name\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"volume\":\"52 2\",\"pages\":\"461-476\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.11786\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11786\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11786","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Identifiability constraints in generalized additive models
Identifiability constraints are necessary for parameter estimation when fitting models with nonlinear covariate associations. The choice of constraint affects standard errors of the estimated curve. Centring constraints are often applied by default because they are thought to yield lowest standard errors out of any constraint, but this claim has not been investigated. We show that whether centring constraints are optimal depends on the response distribution and parameterization, and that for natural exponential family responses under the canonical parametrization, centring constraints are optimal only for Gaussian response.
期刊介绍:
The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics.
The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.