非参数回归模型中局部线性拟合的贝叶斯带宽估计

IF 0.7 4区 经济学 Q3 ECONOMICS
H. Shang, Xibin Zhang
{"title":"非参数回归模型中局部线性拟合的贝叶斯带宽估计","authors":"H. Shang, Xibin Zhang","doi":"10.1515/snde-2018-0050","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents a Bayesian sampling approach to bandwidth estimation for the local linear estimator of the regression function in a nonparametric regression model. In the Bayesian sampling approach, the error density is approximated by a location-mixture density of Gaussian densities with means the individual errors and variance a constant parameter. This mixture density has the form of a kernel density estimator of errors and is referred to as the kernel-form error density (c.f. Zhang, X., M. L. King, and H. L. Shang. 2014. “A Sampling Algorithm for Bandwidth Estimation in a Nonparametric Regression Model with a Flexible Error Density.” Computational Statistics & Data Analysis 78: 218–34.). While (Zhang, X., M. L. King, and H. L. Shang. 2014. “A Sampling Algorithm for Bandwidth Estimation in a Nonparametric Regression Model with a Flexible Error Density.” Computational Statistics & Data Analysis 78: 218–34) use the local constant (also known as the Nadaraya-Watson) estimator to estimate the regression function, we extend this to the local linear estimator, which produces more accurate estimation. The proposed investigation is motivated by the lack of data-driven methods for simultaneously choosing bandwidths in the local linear estimator of the regression function and kernel-form error density. Treating bandwidths as parameters, we derive an approximate (pseudo) likelihood and a posterior. A simulation study shows that the proposed bandwidth estimation outperforms the rule-of-thumb and cross-validation methods under the criterion of integrated squared errors. The proposed bandwidth estimation method is validated through a nonparametric regression model involving firm ownership concentration, and a model involving state-price density estimation.","PeriodicalId":46709,"journal":{"name":"Studies in Nonlinear Dynamics and Econometrics","volume":"26 1","pages":"55 - 71"},"PeriodicalIF":0.7000,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/snde-2018-0050","citationCount":"1","resultStr":"{\"title\":\"Bayesian bandwidth estimation for local linear fitting in nonparametric regression models\",\"authors\":\"H. Shang, Xibin Zhang\",\"doi\":\"10.1515/snde-2018-0050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper presents a Bayesian sampling approach to bandwidth estimation for the local linear estimator of the regression function in a nonparametric regression model. In the Bayesian sampling approach, the error density is approximated by a location-mixture density of Gaussian densities with means the individual errors and variance a constant parameter. This mixture density has the form of a kernel density estimator of errors and is referred to as the kernel-form error density (c.f. Zhang, X., M. L. King, and H. L. Shang. 2014. “A Sampling Algorithm for Bandwidth Estimation in a Nonparametric Regression Model with a Flexible Error Density.” Computational Statistics & Data Analysis 78: 218–34.). While (Zhang, X., M. L. King, and H. L. Shang. 2014. “A Sampling Algorithm for Bandwidth Estimation in a Nonparametric Regression Model with a Flexible Error Density.” Computational Statistics & Data Analysis 78: 218–34) use the local constant (also known as the Nadaraya-Watson) estimator to estimate the regression function, we extend this to the local linear estimator, which produces more accurate estimation. The proposed investigation is motivated by the lack of data-driven methods for simultaneously choosing bandwidths in the local linear estimator of the regression function and kernel-form error density. Treating bandwidths as parameters, we derive an approximate (pseudo) likelihood and a posterior. A simulation study shows that the proposed bandwidth estimation outperforms the rule-of-thumb and cross-validation methods under the criterion of integrated squared errors. The proposed bandwidth estimation method is validated through a nonparametric regression model involving firm ownership concentration, and a model involving state-price density estimation.\",\"PeriodicalId\":46709,\"journal\":{\"name\":\"Studies in Nonlinear Dynamics and Econometrics\",\"volume\":\"26 1\",\"pages\":\"55 - 71\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/snde-2018-0050\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Nonlinear Dynamics and Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1515/snde-2018-0050\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics and Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1515/snde-2018-0050","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文针对非参数回归模型中回归函数的局部线性估计器,提出了一种带宽估计的贝叶斯抽样方法。在贝叶斯抽样方法中,误差密度由高斯密度的位置混合密度近似,其中个体误差和方差的均值是一个常数参数。该混合密度具有误差的核密度估计器的形式,并被称为核形式误差密度(c.f.Zhang,X.,M.L.King,and H.L.Shang.2014)。“具有灵活误差密度的非参数回归模型中带宽估计的采样算法”。计算统计学与数据分析78:218-34.)。而(张,X.,M.L.King,和H.L.Shang。2014。“具有灵活误差密度的非参数回归模型中带宽估计的采样算法。”计算统计与数据分析78:218-34)使用局部常数(也称为Nadaraya-WWatson)估计器来估计回归函数,我们将其扩展到局部线性估计器,从而产生更准确的估计。所提出的研究是由于缺乏数据驱动的方法来同时选择回归函数的局部线性估计器和核形式误差密度的带宽。将带宽视为参数,我们导出近似(伪)似然和后验。仿真研究表明,在积分平方误差准则下,所提出的带宽估计优于经验法则和交叉验证方法。通过一个涉及企业所有权集中的非参数回归模型和一个涉及州价格密度估计的模型,验证了所提出的带宽估计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian bandwidth estimation for local linear fitting in nonparametric regression models
Abstract This paper presents a Bayesian sampling approach to bandwidth estimation for the local linear estimator of the regression function in a nonparametric regression model. In the Bayesian sampling approach, the error density is approximated by a location-mixture density of Gaussian densities with means the individual errors and variance a constant parameter. This mixture density has the form of a kernel density estimator of errors and is referred to as the kernel-form error density (c.f. Zhang, X., M. L. King, and H. L. Shang. 2014. “A Sampling Algorithm for Bandwidth Estimation in a Nonparametric Regression Model with a Flexible Error Density.” Computational Statistics & Data Analysis 78: 218–34.). While (Zhang, X., M. L. King, and H. L. Shang. 2014. “A Sampling Algorithm for Bandwidth Estimation in a Nonparametric Regression Model with a Flexible Error Density.” Computational Statistics & Data Analysis 78: 218–34) use the local constant (also known as the Nadaraya-Watson) estimator to estimate the regression function, we extend this to the local linear estimator, which produces more accurate estimation. The proposed investigation is motivated by the lack of data-driven methods for simultaneously choosing bandwidths in the local linear estimator of the regression function and kernel-form error density. Treating bandwidths as parameters, we derive an approximate (pseudo) likelihood and a posterior. A simulation study shows that the proposed bandwidth estimation outperforms the rule-of-thumb and cross-validation methods under the criterion of integrated squared errors. The proposed bandwidth estimation method is validated through a nonparametric regression model involving firm ownership concentration, and a model involving state-price density estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
34
期刊介绍: Studies in Nonlinear Dynamics & Econometrics (SNDE) recognizes that advances in statistics and dynamical systems theory may increase our understanding of economic and financial markets. The journal seeks both theoretical and applied papers that characterize and motivate nonlinear phenomena. Researchers are required to assist replication of empirical results by providing copies of data and programs online. Algorithms and rapid communications are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信