$\mathbb上的代码{Z}_{p} [u]/{\langle u^r\rangle}\times\mathbb{Z}_{p} [u]/{\langle u^s\rangle}$

Q3 Mathematics
Ismail Aydogdu
{"title":"$\\mathbb上的代码{Z}_{p} [u]/{\\langle u^r\\rangle}\\times\\mathbb{Z}_{p} [u]/{\\langle u^s\\rangle}$","authors":"Ismail Aydogdu","doi":"10.13069/JACODESMATH.514339","DOIUrl":null,"url":null,"abstract":"{In this paper we generalize $\\mathbb{Z}_{2}\\mathbb{Z}_{2}[u]$-linear codes to codes over $\\mathbb{Z}_{p}[u]/{\\langle u^r \\rangle}\\times\\mathbb{Z}_{p}[u]/{\\langle u^s \\rangle}$ where $p$ is a prime number and $u^r=0=u^s$. We will call these family of codes as $\\mathbb{Z}_{p}[u^r,u^s]$-linear codes which are actually special submodules. We determine the standard forms of the generator and parity-check matrices of these codes. Furthermore, for the special case $p=2$, we define a Gray map to explore the binary images of $\\mathbb{Z}_{2}[u^r,u^s]$-linear codes. Finally, we study the structure of self-dual $\\mathbb{Z}_{2}[u^2,u^3]$-linear codes and present some examples.","PeriodicalId":37029,"journal":{"name":"Journal of Algebra Combinatorics Discrete Structures and Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Codes over $\\\\mathbb{Z}_{p}[u]/{\\\\langle u^r \\\\rangle}\\\\times\\\\mathbb{Z}_{p}[u]/{\\\\langle u^s \\\\rangle}$\",\"authors\":\"Ismail Aydogdu\",\"doi\":\"10.13069/JACODESMATH.514339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"{In this paper we generalize $\\\\mathbb{Z}_{2}\\\\mathbb{Z}_{2}[u]$-linear codes to codes over $\\\\mathbb{Z}_{p}[u]/{\\\\langle u^r \\\\rangle}\\\\times\\\\mathbb{Z}_{p}[u]/{\\\\langle u^s \\\\rangle}$ where $p$ is a prime number and $u^r=0=u^s$. We will call these family of codes as $\\\\mathbb{Z}_{p}[u^r,u^s]$-linear codes which are actually special submodules. We determine the standard forms of the generator and parity-check matrices of these codes. Furthermore, for the special case $p=2$, we define a Gray map to explore the binary images of $\\\\mathbb{Z}_{2}[u^r,u^s]$-linear codes. Finally, we study the structure of self-dual $\\\\mathbb{Z}_{2}[u^2,u^3]$-linear codes and present some examples.\",\"PeriodicalId\":37029,\"journal\":{\"name\":\"Journal of Algebra Combinatorics Discrete Structures and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra Combinatorics Discrete Structures and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13069/JACODESMATH.514339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra Combinatorics Discrete Structures and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13069/JACODESMATH.514339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

{在本文中,我们推广了$\mathbb{Z}_{2} \mathbb{Z}_{2} [u]$-线性代码到$\mathbb上的代码{Z}_{p} [u]/{\langle u^r\rangle}\times\mathbb{Z}_{p} 其中$p$是素数,$u^r=0=u^s$。我们将这些代码族称为$\mathbb{Z}_{p} [u^r,u^s]$线性码实际上是特殊的子模块。我们确定了这些代码的生成器和奇偶校验矩阵的标准形式。此外,对于特殊情况$p=2$,我们定义了一个Gray映射来探索$\mathbb的二进制图像{Z}_{2} [u^r,u^s]$线性码。最后,我们研究了自对偶$\mathbb的结构{Z}_{2} [u^2,u^3]$线性码,并给出了一些例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Codes over $\mathbb{Z}_{p}[u]/{\langle u^r \rangle}\times\mathbb{Z}_{p}[u]/{\langle u^s \rangle}$
{In this paper we generalize $\mathbb{Z}_{2}\mathbb{Z}_{2}[u]$-linear codes to codes over $\mathbb{Z}_{p}[u]/{\langle u^r \rangle}\times\mathbb{Z}_{p}[u]/{\langle u^s \rangle}$ where $p$ is a prime number and $u^r=0=u^s$. We will call these family of codes as $\mathbb{Z}_{p}[u^r,u^s]$-linear codes which are actually special submodules. We determine the standard forms of the generator and parity-check matrices of these codes. Furthermore, for the special case $p=2$, we define a Gray map to explore the binary images of $\mathbb{Z}_{2}[u^r,u^s]$-linear codes. Finally, we study the structure of self-dual $\mathbb{Z}_{2}[u^2,u^3]$-linear codes and present some examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
12
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信