高功率谐波图和截面

Pub Date : 2022-11-07 DOI:10.1007/s10455-022-09875-9
A. Ramachandran, C. M. Wood
{"title":"高功率谐波图和截面","authors":"A. Ramachandran,&nbsp;C. M. Wood","doi":"10.1007/s10455-022-09875-9","DOIUrl":null,"url":null,"abstract":"<div><p>The variational theory of higher-power energy is developed for mappings between Riemannian manifolds, and more generally sections of submersions of Riemannian manifolds, and applied to sections of Riemannian vector bundles and their sphere subbundles. A complete classification is then given for left-invariant vector fields on three-dimensional unimodular Lie groups equipped with an arbitrary left-invariant Riemannian metric.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-022-09875-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Higher-power harmonic maps and sections\",\"authors\":\"A. Ramachandran,&nbsp;C. M. Wood\",\"doi\":\"10.1007/s10455-022-09875-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The variational theory of higher-power energy is developed for mappings between Riemannian manifolds, and more generally sections of submersions of Riemannian manifolds, and applied to sections of Riemannian vector bundles and their sphere subbundles. A complete classification is then given for left-invariant vector fields on three-dimensional unimodular Lie groups equipped with an arbitrary left-invariant Riemannian metric.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10455-022-09875-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-022-09875-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-022-09875-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高幂能变分理论是为黎曼流形之间的映射,以及更一般的黎曼流形的淹没部分之间的映射而发展的,并应用于黎曼向量丛的部分及其球面子丛。然后给出了具有任意左不变黎曼度量的三维幺模李群上左不变向量场的完全分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Higher-power harmonic maps and sections

The variational theory of higher-power energy is developed for mappings between Riemannian manifolds, and more generally sections of submersions of Riemannian manifolds, and applied to sections of Riemannian vector bundles and their sphere subbundles. A complete classification is then given for left-invariant vector fields on three-dimensional unimodular Lie groups equipped with an arbitrary left-invariant Riemannian metric.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信