{"title":"Sasaki型接触结构及其相关模","authors":"C. Boyer","doi":"10.1515/coma-2019-0001","DOIUrl":null,"url":null,"abstract":"Abstract This article is based on a talk at the RIEMain in Contact conference in Cagliari, Italy in honor of the 78th birthday of David Blair one of the founders of modern Riemannian contact geometry. The present article is a survey of a special type of Riemannian contact structure known as Sasakian geometry. An ultimate goal of this survey is to understand the moduli of classes of Sasakian structures as well as the moduli of extremal and constant scalar curvature Sasaki metrics, and in particular the moduli of Sasaki-Einstein metrics.","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":"6 1","pages":"1 - 30"},"PeriodicalIF":0.5000,"publicationDate":"2018-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/coma-2019-0001","citationCount":"2","resultStr":"{\"title\":\"Contact Structures of Sasaki Type and Their Associated Moduli\",\"authors\":\"C. Boyer\",\"doi\":\"10.1515/coma-2019-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article is based on a talk at the RIEMain in Contact conference in Cagliari, Italy in honor of the 78th birthday of David Blair one of the founders of modern Riemannian contact geometry. The present article is a survey of a special type of Riemannian contact structure known as Sasakian geometry. An ultimate goal of this survey is to understand the moduli of classes of Sasakian structures as well as the moduli of extremal and constant scalar curvature Sasaki metrics, and in particular the moduli of Sasaki-Einstein metrics.\",\"PeriodicalId\":42393,\"journal\":{\"name\":\"Complex Manifolds\",\"volume\":\"6 1\",\"pages\":\"1 - 30\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/coma-2019-0001\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Manifolds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/coma-2019-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2019-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
摘要
摘要本文基于在意大利卡利亚里举行的RIEMain in Contact会议上为纪念现代黎曼接触几何创始人之一David Blair 78岁生日所做的一次演讲。本文是对一种特殊类型的黎曼接触结构Sasakian几何的综述。这项调查的最终目标是了解Sasaki结构类的模量,以及极值和常标量曲率Sasaki度量的模量,特别是Sasaki-Enstein度量的模量。
Contact Structures of Sasaki Type and Their Associated Moduli
Abstract This article is based on a talk at the RIEMain in Contact conference in Cagliari, Italy in honor of the 78th birthday of David Blair one of the founders of modern Riemannian contact geometry. The present article is a survey of a special type of Riemannian contact structure known as Sasakian geometry. An ultimate goal of this survey is to understand the moduli of classes of Sasakian structures as well as the moduli of extremal and constant scalar curvature Sasaki metrics, and in particular the moduli of Sasaki-Einstein metrics.
期刊介绍:
Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.