P. Sun, P. H. Chen, Wei-Jiun Lin, Chung-Chi Lin, Jui-Yu Chou
{"title":"马蹄莲花外花蜜中真菌吸引蚂蚁作为植物防御者能力的变化","authors":"P. Sun, P. H. Chen, Wei-Jiun Lin, Chung-Chi Lin, Jui-Yu Chou","doi":"10.5943/MYCOSPHERE/9/2/2","DOIUrl":null,"url":null,"abstract":"Many plant–ant interactions are considered mutualisms. In Mallotus paniculatus (Euphorbiaceae) (also known as Turn-in-the-wind), the extrafloral nectaries (EFNs) on the base of the leaf laminas can produce sugar-rich secretions to attract ants as effective agents against herbivores or plant competitors. Growing evidence reveals that microorganisms are important “hidden players” in insect–plant interactions. Understanding which microorganisms act as such third-party species and how they operate is a major challenge in the study of mutualistic interactions. In this study, we showed that two dominant fungal species, the yeast Jaminaea angkorensis and the hyphal fungus Gibellulopsis nigrescens both from EFNs and the interiors of bodies of the ant Pheidole megacephala (Formicidae) on their own were sufficient for ant attraction. Our results also revealed that different fungal species on the host plant influenced ant behavior differently. These results can be applied in agriculture to increase ants or herbivore predators to protect plant hosts using fungal baits. Moreover, they indicate that fungal odors represent the critical signal to establish the plant–microbe–insect interactions. The traditional plant– defender concept must be updated to include the role of microorganisms.","PeriodicalId":48718,"journal":{"name":"Mycosphere","volume":"9 1","pages":"178-188"},"PeriodicalIF":10.0000,"publicationDate":"2018-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Variation in the ability of fungi in the extrafloral nectar of Mallotus paniculatus to attract ants as plant defenders\",\"authors\":\"P. Sun, P. H. Chen, Wei-Jiun Lin, Chung-Chi Lin, Jui-Yu Chou\",\"doi\":\"10.5943/MYCOSPHERE/9/2/2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many plant–ant interactions are considered mutualisms. In Mallotus paniculatus (Euphorbiaceae) (also known as Turn-in-the-wind), the extrafloral nectaries (EFNs) on the base of the leaf laminas can produce sugar-rich secretions to attract ants as effective agents against herbivores or plant competitors. Growing evidence reveals that microorganisms are important “hidden players” in insect–plant interactions. Understanding which microorganisms act as such third-party species and how they operate is a major challenge in the study of mutualistic interactions. In this study, we showed that two dominant fungal species, the yeast Jaminaea angkorensis and the hyphal fungus Gibellulopsis nigrescens both from EFNs and the interiors of bodies of the ant Pheidole megacephala (Formicidae) on their own were sufficient for ant attraction. Our results also revealed that different fungal species on the host plant influenced ant behavior differently. These results can be applied in agriculture to increase ants or herbivore predators to protect plant hosts using fungal baits. Moreover, they indicate that fungal odors represent the critical signal to establish the plant–microbe–insect interactions. The traditional plant– defender concept must be updated to include the role of microorganisms.\",\"PeriodicalId\":48718,\"journal\":{\"name\":\"Mycosphere\",\"volume\":\"9 1\",\"pages\":\"178-188\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2018-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mycosphere\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.5943/MYCOSPHERE/9/2/2\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycosphere","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.5943/MYCOSPHERE/9/2/2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MYCOLOGY","Score":null,"Total":0}
Variation in the ability of fungi in the extrafloral nectar of Mallotus paniculatus to attract ants as plant defenders
Many plant–ant interactions are considered mutualisms. In Mallotus paniculatus (Euphorbiaceae) (also known as Turn-in-the-wind), the extrafloral nectaries (EFNs) on the base of the leaf laminas can produce sugar-rich secretions to attract ants as effective agents against herbivores or plant competitors. Growing evidence reveals that microorganisms are important “hidden players” in insect–plant interactions. Understanding which microorganisms act as such third-party species and how they operate is a major challenge in the study of mutualistic interactions. In this study, we showed that two dominant fungal species, the yeast Jaminaea angkorensis and the hyphal fungus Gibellulopsis nigrescens both from EFNs and the interiors of bodies of the ant Pheidole megacephala (Formicidae) on their own were sufficient for ant attraction. Our results also revealed that different fungal species on the host plant influenced ant behavior differently. These results can be applied in agriculture to increase ants or herbivore predators to protect plant hosts using fungal baits. Moreover, they indicate that fungal odors represent the critical signal to establish the plant–microbe–insect interactions. The traditional plant– defender concept must be updated to include the role of microorganisms.
期刊介绍:
Mycosphere stands as an international, peer-reviewed journal committed to the rapid dissemination of high-quality papers on fungal biology. Embracing an open-access approach, Mycosphere serves as a dedicated platform for the mycology community, ensuring swift publication of their valuable contributions. All submitted manuscripts undergo a thorough peer-review process before acceptance, with authors retaining copyright.
Key highlights of Mycosphere's publication include:
- Peer-reviewed manuscripts and monographs
- Open access, fostering accessibility and dissemination of knowledge
- Swift turnaround, facilitating timely sharing of research findings
- For information regarding open access charges, refer to the instructions for authors
- Special volumes, offering a platform for thematic collections and focused contributions.
Mycosphere is dedicated to promoting the accessibility and advancement of fungal biology through its inclusive and efficient publishing process.