基于混合加速尺度不变鲁棒特征(h-SUSIRF)算法的动态ROI关键点多秘密图像嵌入

Q4 Computer Science
Suganthi Kumar, Rajkumar Soundrapandiyan
{"title":"基于混合加速尺度不变鲁棒特征(h-SUSIRF)算法的动态ROI关键点多秘密图像嵌入","authors":"Suganthi Kumar, Rajkumar Soundrapandiyan","doi":"10.5565/rev/elcvia.1470","DOIUrl":null,"url":null,"abstract":"This paper presents a robust and high-capacity video steganography framework using a hybrid Speeded Up Scale Invariant Robust Features (h-SUSIRF) keypoints detection algorithm. There are two main objectives in this method: (1) determining the dynamic Region of Interest (ROI) keypoints in video scenes and (2) embedding the appropriate secret data into the identified regions. In this work, the h-SUSIRF keypoints detection scheme is proposed to find keypoints within the scenes. These identified keypoints are dilated to form the dynamic ROI keypoints. Finally, the secret images are embedded into the dynamic ROI keypoints’ locations of the scenes using the substitution method. The performance of the proposed method (PM) is evaluated using standard metrics Structural Similarity Index Measure (SSIM), Capacity (Cp), and Bit Error Rate (BER). The standard of the video is ensured by Video Quality Measure (VQM). To examine the efficacy of the PM some recent steganalysis schemes are applied to calculate the detection ratio and the Receiver Operating Characteristics (ROC) curve is analyzed. From the experimental analysis, it is deduced that the PM surpasses the contemporary methods by achieving significant results in terms of imperceptibility, capacity, robustness with lower computational complexity.","PeriodicalId":38711,"journal":{"name":"Electronic Letters on Computer Vision and Image Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"multiple secret image embedding in dynamic ROI keypoints based on hybrid Speeded Up Scale Invariant Robust Features (h-SUSIRF) algorithm\",\"authors\":\"Suganthi Kumar, Rajkumar Soundrapandiyan\",\"doi\":\"10.5565/rev/elcvia.1470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a robust and high-capacity video steganography framework using a hybrid Speeded Up Scale Invariant Robust Features (h-SUSIRF) keypoints detection algorithm. There are two main objectives in this method: (1) determining the dynamic Region of Interest (ROI) keypoints in video scenes and (2) embedding the appropriate secret data into the identified regions. In this work, the h-SUSIRF keypoints detection scheme is proposed to find keypoints within the scenes. These identified keypoints are dilated to form the dynamic ROI keypoints. Finally, the secret images are embedded into the dynamic ROI keypoints’ locations of the scenes using the substitution method. The performance of the proposed method (PM) is evaluated using standard metrics Structural Similarity Index Measure (SSIM), Capacity (Cp), and Bit Error Rate (BER). The standard of the video is ensured by Video Quality Measure (VQM). To examine the efficacy of the PM some recent steganalysis schemes are applied to calculate the detection ratio and the Receiver Operating Characteristics (ROC) curve is analyzed. From the experimental analysis, it is deduced that the PM surpasses the contemporary methods by achieving significant results in terms of imperceptibility, capacity, robustness with lower computational complexity.\",\"PeriodicalId\":38711,\"journal\":{\"name\":\"Electronic Letters on Computer Vision and Image Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Letters on Computer Vision and Image Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5565/rev/elcvia.1470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Letters on Computer Vision and Image Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5565/rev/elcvia.1470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种使用混合加速尺度不变鲁棒特征(h-SUSIRF)关键点检测算法的鲁棒和高容量视频隐写术框架。该方法有两个主要目标:(1)确定视频场景中的动态感兴趣区域(ROI)关键点;(2)将适当的秘密数据嵌入到所识别的区域中。在这项工作中,提出了h-SUSIRF关键点检测方案来寻找场景中的关键点。这些识别的关键点被展开以形成动态ROI关键点。最后,使用替换方法将秘密图像嵌入到场景的动态ROI关键点位置中。使用标准度量结构相似性指数测度(SSIM)、容量(Cp)和误码率(BER)来评估所提出的方法(PM)的性能。视频的标准是由视频质量测量(VQM)来保证的。为了检验PM的有效性,应用一些最近的隐写分析方案来计算检测率,并分析接收器操作特性(ROC)曲线。从实验分析中可以推断,PM在不可察觉性、容量、鲁棒性和较低的计算复杂度方面取得了显著的结果,超过了当代的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
multiple secret image embedding in dynamic ROI keypoints based on hybrid Speeded Up Scale Invariant Robust Features (h-SUSIRF) algorithm
This paper presents a robust and high-capacity video steganography framework using a hybrid Speeded Up Scale Invariant Robust Features (h-SUSIRF) keypoints detection algorithm. There are two main objectives in this method: (1) determining the dynamic Region of Interest (ROI) keypoints in video scenes and (2) embedding the appropriate secret data into the identified regions. In this work, the h-SUSIRF keypoints detection scheme is proposed to find keypoints within the scenes. These identified keypoints are dilated to form the dynamic ROI keypoints. Finally, the secret images are embedded into the dynamic ROI keypoints’ locations of the scenes using the substitution method. The performance of the proposed method (PM) is evaluated using standard metrics Structural Similarity Index Measure (SSIM), Capacity (Cp), and Bit Error Rate (BER). The standard of the video is ensured by Video Quality Measure (VQM). To examine the efficacy of the PM some recent steganalysis schemes are applied to calculate the detection ratio and the Receiver Operating Characteristics (ROC) curve is analyzed. From the experimental analysis, it is deduced that the PM surpasses the contemporary methods by achieving significant results in terms of imperceptibility, capacity, robustness with lower computational complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Letters on Computer Vision and Image Analysis
Electronic Letters on Computer Vision and Image Analysis Computer Science-Computer Vision and Pattern Recognition
CiteScore
2.50
自引率
0.00%
发文量
19
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信