{"title":"各向异性圆对平面内弹性波的散射","authors":"A. Boström","doi":"10.1093/QJMAM/HBX029","DOIUrl":null,"url":null,"abstract":"The 2D scattering of in-plane elastic waves by a circle is considered when the surrounding medium is isotropic and the medium inside the circle is anisotropic (orthotropic). The equations inside the circle are transformed to polar coordinates and then depend explicitly on the azimuthal angle through trigonometric functions. Making expansions in trigonometric series in the azimuthal coordinate give a coupled system of ordinary differential equations in the radial coordinate that is solved by power series expansions. With the solution inside the circle complete the scattering problem is solved essentially as in the classical case. The elements of the transition (T) matrix of the circle are given explicitly for low frequencies (long wavelengths). For low frequencies some numerical examples are given showing the strong influence of anisotropy.","PeriodicalId":56087,"journal":{"name":"Quarterly Journal of Mechanics and Applied Mathematics","volume":"71 1","pages":"139-155"},"PeriodicalIF":0.8000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/QJMAM/HBX029","citationCount":"10","resultStr":"{\"title\":\"Scattering of In-plane Elastic Waves by an Anisotropic Circle\",\"authors\":\"A. Boström\",\"doi\":\"10.1093/QJMAM/HBX029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The 2D scattering of in-plane elastic waves by a circle is considered when the surrounding medium is isotropic and the medium inside the circle is anisotropic (orthotropic). The equations inside the circle are transformed to polar coordinates and then depend explicitly on the azimuthal angle through trigonometric functions. Making expansions in trigonometric series in the azimuthal coordinate give a coupled system of ordinary differential equations in the radial coordinate that is solved by power series expansions. With the solution inside the circle complete the scattering problem is solved essentially as in the classical case. The elements of the transition (T) matrix of the circle are given explicitly for low frequencies (long wavelengths). For low frequencies some numerical examples are given showing the strong influence of anisotropy.\",\"PeriodicalId\":56087,\"journal\":{\"name\":\"Quarterly Journal of Mechanics and Applied Mathematics\",\"volume\":\"71 1\",\"pages\":\"139-155\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/QJMAM/HBX029\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Mechanics and Applied Mathematics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/QJMAM/HBX029\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mechanics and Applied Mathematics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/QJMAM/HBX029","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Scattering of In-plane Elastic Waves by an Anisotropic Circle
The 2D scattering of in-plane elastic waves by a circle is considered when the surrounding medium is isotropic and the medium inside the circle is anisotropic (orthotropic). The equations inside the circle are transformed to polar coordinates and then depend explicitly on the azimuthal angle through trigonometric functions. Making expansions in trigonometric series in the azimuthal coordinate give a coupled system of ordinary differential equations in the radial coordinate that is solved by power series expansions. With the solution inside the circle complete the scattering problem is solved essentially as in the classical case. The elements of the transition (T) matrix of the circle are given explicitly for low frequencies (long wavelengths). For low frequencies some numerical examples are given showing the strong influence of anisotropy.
期刊介绍:
The Quarterly Journal of Mechanics and Applied Mathematics publishes original research articles on the application of mathematics to the field of mechanics interpreted in its widest sense. In addition to traditional areas, such as fluid and solid mechanics, the editors welcome submissions relating to any modern and emerging areas of applied mathematics.