摩擦钻井过程的热力行为模拟

Q3 Engineering
R. Kumar, N. Hynes, Anish Khan
{"title":"摩擦钻井过程的热力行为模拟","authors":"R. Kumar, N. Hynes, Anish Khan","doi":"10.1504/ijcmsse.2020.10029644","DOIUrl":null,"url":null,"abstract":"Friction drilling is a novel technique for producing holes in thin sheet metal without plastic shear and material removal. In this process, no chip comes out, the displaced material in the region of hole thus made, forms a bushing by a conical friction drilling tool. During the process of producing holes in the sheet metal, severe plastic deformation of workpiece material occurs and eventually, the temperature distribution in tool and workpiece is very high. Hence, simulation of the process is necessary to predict the direction of material flow and high temperature distribution which are challenging to measure by experimentation alone. The objective of this work is to numerically analyse the pattern of bush formation in thin sheet metal of galvanised steel during the process and to predict the temperature distribution, axial force, and torque in the work piece. Validation shows high degree of agreement between the numerical results and experimental results.","PeriodicalId":39426,"journal":{"name":"International Journal of Computational Materials Science and Surface Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Simulation of thermo-mechanical behaviour of friction drilling process\",\"authors\":\"R. Kumar, N. Hynes, Anish Khan\",\"doi\":\"10.1504/ijcmsse.2020.10029644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Friction drilling is a novel technique for producing holes in thin sheet metal without plastic shear and material removal. In this process, no chip comes out, the displaced material in the region of hole thus made, forms a bushing by a conical friction drilling tool. During the process of producing holes in the sheet metal, severe plastic deformation of workpiece material occurs and eventually, the temperature distribution in tool and workpiece is very high. Hence, simulation of the process is necessary to predict the direction of material flow and high temperature distribution which are challenging to measure by experimentation alone. The objective of this work is to numerically analyse the pattern of bush formation in thin sheet metal of galvanised steel during the process and to predict the temperature distribution, axial force, and torque in the work piece. Validation shows high degree of agreement between the numerical results and experimental results.\",\"PeriodicalId\":39426,\"journal\":{\"name\":\"International Journal of Computational Materials Science and Surface Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Materials Science and Surface Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijcmsse.2020.10029644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Materials Science and Surface Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcmsse.2020.10029644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 6

摘要

摩擦钻孔是一种在没有塑性剪切和材料去除的情况下在薄金属板上产生孔的新技术。在这个过程中,没有碎屑出来,在这样形成的孔区域中的位移材料通过锥形摩擦钻具形成衬套。在金属板上产生孔的过程中,工件材料会发生严重的塑性变形,最终导致工具和工件中的温度分布非常高。因此,有必要对该过程进行模拟,以预测材料流动的方向和高温分布,而仅通过实验测量这些方向和分布是具有挑战性的。这项工作的目的是数值分析镀锌钢薄板在加工过程中形成衬套的模式,并预测工件中的温度分布、轴向力和扭矩。验证表明,数值结果与实验结果高度一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation of thermo-mechanical behaviour of friction drilling process
Friction drilling is a novel technique for producing holes in thin sheet metal without plastic shear and material removal. In this process, no chip comes out, the displaced material in the region of hole thus made, forms a bushing by a conical friction drilling tool. During the process of producing holes in the sheet metal, severe plastic deformation of workpiece material occurs and eventually, the temperature distribution in tool and workpiece is very high. Hence, simulation of the process is necessary to predict the direction of material flow and high temperature distribution which are challenging to measure by experimentation alone. The objective of this work is to numerically analyse the pattern of bush formation in thin sheet metal of galvanised steel during the process and to predict the temperature distribution, axial force, and torque in the work piece. Validation shows high degree of agreement between the numerical results and experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
3
期刊介绍: IJCMSSE is a refereed international journal that aims to provide a blend of theoretical and applied study of computational materials science and surface engineering. The scope of IJCMSSE original scientific papers that describe computer methods of modelling, simulation, and prediction for designing materials and structures at all length scales. The Editors-in-Chief of IJCMSSE encourage the submission of fundamental and interdisciplinary contributions on materials science and engineering, surface engineering and computational methods of modelling, simulation, and prediction. Papers published in IJCMSSE involve the solution of current problems, in which it is necessary to apply computational materials science and surface engineering methods for solving relevant engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信