Anis Hamrouni, J. Rebiere, A. El Mahi, M. Beyaoui, M. Haddar
{"title":"具有膨胀或非膨胀芯的3D打印三明治的实验和有限元分析","authors":"Anis Hamrouni, J. Rebiere, A. El Mahi, M. Beyaoui, M. Haddar","doi":"10.1177/10996362231151454","DOIUrl":null,"url":null,"abstract":"This work presents the results of experimental and numerical analyses of the static properties of architectural cores and the dynamic behavior of sandwich structures made with an auxetic or non-auxetic core. Three architectural cores have been studied which are re-entrant, rectangular and hexagonal honeycombs. Each configuration was produced with four relative densities depending on the number of cells in the width of the specimens. The specimens were made with additive manufacturing technology. The material used to make the specimens was polylactic acid with flax fibers. Several tensile tests were carried out on the architectural cores to analyze and understand the influence of the topology and the density of the core on the Poisson’s ratio and the Young’s modulus of these architectural structures. Then, vibration tests were carried out on the cores and the sandwich structures. The objective was to study the influence of these structures and their densities on the dynamic properties of sandwiches. The structural Poisson’s ratio shows a sensitive behavior to the core topology and density.","PeriodicalId":17215,"journal":{"name":"Journal of Sandwich Structures & Materials","volume":"25 1","pages":"426 - 444"},"PeriodicalIF":3.5000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Experimental and finite element analyses of a 3D printed sandwich with an auxetic or non-auxetic core\",\"authors\":\"Anis Hamrouni, J. Rebiere, A. El Mahi, M. Beyaoui, M. Haddar\",\"doi\":\"10.1177/10996362231151454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents the results of experimental and numerical analyses of the static properties of architectural cores and the dynamic behavior of sandwich structures made with an auxetic or non-auxetic core. Three architectural cores have been studied which are re-entrant, rectangular and hexagonal honeycombs. Each configuration was produced with four relative densities depending on the number of cells in the width of the specimens. The specimens were made with additive manufacturing technology. The material used to make the specimens was polylactic acid with flax fibers. Several tensile tests were carried out on the architectural cores to analyze and understand the influence of the topology and the density of the core on the Poisson’s ratio and the Young’s modulus of these architectural structures. Then, vibration tests were carried out on the cores and the sandwich structures. The objective was to study the influence of these structures and their densities on the dynamic properties of sandwiches. The structural Poisson’s ratio shows a sensitive behavior to the core topology and density.\",\"PeriodicalId\":17215,\"journal\":{\"name\":\"Journal of Sandwich Structures & Materials\",\"volume\":\"25 1\",\"pages\":\"426 - 444\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sandwich Structures & Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/10996362231151454\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sandwich Structures & Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/10996362231151454","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Experimental and finite element analyses of a 3D printed sandwich with an auxetic or non-auxetic core
This work presents the results of experimental and numerical analyses of the static properties of architectural cores and the dynamic behavior of sandwich structures made with an auxetic or non-auxetic core. Three architectural cores have been studied which are re-entrant, rectangular and hexagonal honeycombs. Each configuration was produced with four relative densities depending on the number of cells in the width of the specimens. The specimens were made with additive manufacturing technology. The material used to make the specimens was polylactic acid with flax fibers. Several tensile tests were carried out on the architectural cores to analyze and understand the influence of the topology and the density of the core on the Poisson’s ratio and the Young’s modulus of these architectural structures. Then, vibration tests were carried out on the cores and the sandwich structures. The objective was to study the influence of these structures and their densities on the dynamic properties of sandwiches. The structural Poisson’s ratio shows a sensitive behavior to the core topology and density.
期刊介绍:
The Journal of Sandwich Structures and Materials is an international peer reviewed journal that provides a means of communication to fellow engineers and scientists by providing an archival record of developments in the science, technology, and professional practices of sandwich construction throughout the world. This journal is a member of the Committee on Publication Ethics (COPE).