Kaitlyn J. Tonra, Christopher D. Wells, Howard R. Lasker
{"title":"柳橙丛的产卵、胚胎发生、定居和定居后的发育","authors":"Kaitlyn J. Tonra, Christopher D. Wells, Howard R. Lasker","doi":"10.1111/ivb.12319","DOIUrl":null,"url":null,"abstract":"<p>Patterns of population biology and community structure can be studied by looking closely at the ontogeny and reproductive biology of reef-building organisms. This knowledge is particularly important for Caribbean octocorals, which seem to be more resilient to long-term environmental change than scleractinian corals and provide some of the same ecological services. We monitored the development of the black sea rod, <i>Plexaura homomalla</i>, a common, widely distributed octocoral on shallow Caribbean reefs, from eggs to three-polyp colonies over the course of 10 weeks. Gametes were collected <i>ex situ</i> on St. John, U.S. Virgin Islands, during spawning events that occurred 3–6 days after the July full moon. Cleavage started 3.0 hr after fertilization and was holoblastic, equal, and radial. Embryos were positively buoyant until becoming planulae at 3 days after fertilization. Planulae were competent to settle 4 days after fertilization. Symbiodiniaceae began infecting polyps ~8 days after fertilization. Overall, development was typical for Caribbean octocorals, except for an increase in the number of embryos between 3.5 and 6.0 hr after fertilization.</p>","PeriodicalId":54923,"journal":{"name":"Invertebrate Biology","volume":"140 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/ivb.12319","citationCount":"3","resultStr":"{\"title\":\"Spawning, embryogenesis, settlement, and post-settlement development of the gorgonian Plexaura homomalla\",\"authors\":\"Kaitlyn J. Tonra, Christopher D. Wells, Howard R. Lasker\",\"doi\":\"10.1111/ivb.12319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Patterns of population biology and community structure can be studied by looking closely at the ontogeny and reproductive biology of reef-building organisms. This knowledge is particularly important for Caribbean octocorals, which seem to be more resilient to long-term environmental change than scleractinian corals and provide some of the same ecological services. We monitored the development of the black sea rod, <i>Plexaura homomalla</i>, a common, widely distributed octocoral on shallow Caribbean reefs, from eggs to three-polyp colonies over the course of 10 weeks. Gametes were collected <i>ex situ</i> on St. John, U.S. Virgin Islands, during spawning events that occurred 3–6 days after the July full moon. Cleavage started 3.0 hr after fertilization and was holoblastic, equal, and radial. Embryos were positively buoyant until becoming planulae at 3 days after fertilization. Planulae were competent to settle 4 days after fertilization. Symbiodiniaceae began infecting polyps ~8 days after fertilization. Overall, development was typical for Caribbean octocorals, except for an increase in the number of embryos between 3.5 and 6.0 hr after fertilization.</p>\",\"PeriodicalId\":54923,\"journal\":{\"name\":\"Invertebrate Biology\",\"volume\":\"140 2\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/ivb.12319\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Invertebrate Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ivb.12319\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Invertebrate Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ivb.12319","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Spawning, embryogenesis, settlement, and post-settlement development of the gorgonian Plexaura homomalla
Patterns of population biology and community structure can be studied by looking closely at the ontogeny and reproductive biology of reef-building organisms. This knowledge is particularly important for Caribbean octocorals, which seem to be more resilient to long-term environmental change than scleractinian corals and provide some of the same ecological services. We monitored the development of the black sea rod, Plexaura homomalla, a common, widely distributed octocoral on shallow Caribbean reefs, from eggs to three-polyp colonies over the course of 10 weeks. Gametes were collected ex situ on St. John, U.S. Virgin Islands, during spawning events that occurred 3–6 days after the July full moon. Cleavage started 3.0 hr after fertilization and was holoblastic, equal, and radial. Embryos were positively buoyant until becoming planulae at 3 days after fertilization. Planulae were competent to settle 4 days after fertilization. Symbiodiniaceae began infecting polyps ~8 days after fertilization. Overall, development was typical for Caribbean octocorals, except for an increase in the number of embryos between 3.5 and 6.0 hr after fertilization.
期刊介绍:
Invertebrate Biology presents fundamental advances in our understanding of the structure, function, ecology, and evolution of the invertebrates, which represent the vast majority of animal diversity. Though ultimately organismal in focus, the journal publishes manuscripts addressing phenomena at all levels of biological organization. Invertebrate Biology welcomes manuscripts addressing the biology of invertebrates from diverse perspectives, including those of:
• genetics, cell, and molecular biology
• morphology and biomechanics
• reproduction and development
• physiology and behavior
• ecology
• evolution and phylogenetics