测度度量空间中定义的Lebesgue空间和Morrey空间上的Bessel-Riesz算子

IF 1.4 Q2 MATHEMATICS, APPLIED
Saba Mehmood, Eridani, Fatmawati, Wasim Raza
{"title":"测度度量空间中定义的Lebesgue空间和Morrey空间上的Bessel-Riesz算子","authors":"Saba Mehmood, Eridani, Fatmawati, Wasim Raza","doi":"10.1155/2023/3148049","DOIUrl":null,"url":null,"abstract":"The boundedness of Bessel–Riesz operators defined on Lebesgue spaces and Morrey spaces in measure metric spaces is discussed in this research study. The maximal operator and traditional dyadic decomposition are used to study the Bessel-Riesz operators. We investigate the interaction between the kernel and space parameters to get the results and see how this affects kernel-bound operators.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bessel-Riesz Operators on Lebesgue Spaces and Morrey Spaces Defined in Measure Metric Spaces\",\"authors\":\"Saba Mehmood, Eridani, Fatmawati, Wasim Raza\",\"doi\":\"10.1155/2023/3148049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The boundedness of Bessel–Riesz operators defined on Lebesgue spaces and Morrey spaces in measure metric spaces is discussed in this research study. The maximal operator and traditional dyadic decomposition are used to study the Bessel-Riesz operators. We investigate the interaction between the kernel and space parameters to get the results and see how this affects kernel-bound operators.\",\"PeriodicalId\":55967,\"journal\":{\"name\":\"International Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/3148049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/3148049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了测度度量空间中Lebesgue空间和Morrey空间上定义的Bessel–Riesz算子的有界性。利用极大算子和传统的并矢分解方法研究了贝塞尔-里兹算子。我们研究了内核和空间参数之间的相互作用,以获得结果,并了解这如何影响内核绑定运算符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bessel-Riesz Operators on Lebesgue Spaces and Morrey Spaces Defined in Measure Metric Spaces
The boundedness of Bessel–Riesz operators defined on Lebesgue spaces and Morrey spaces in measure metric spaces is discussed in this research study. The maximal operator and traditional dyadic decomposition are used to study the Bessel-Riesz operators. We investigate the interaction between the kernel and space parameters to get the results and see how this affects kernel-bound operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
20
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信