{"title":"关于亏格三的紧致曲面上拉普拉斯算子的第一特征值","authors":"A. Ros","doi":"10.2969/jmsj/85898589","DOIUrl":null,"url":null,"abstract":"For any compact riemannian surface of genus three $(\\Sigma,ds^2)$ Yang and Yau proved that the product of the first eigenvalue of the Laplacian $\\lambda_1(ds^2)$ and the area $Area(ds^2)$ is bounded above by $24\\pi$. In this paper we improve the result and we show that $\\lambda_1(ds^2)Area(ds^2)\\leq16(4-\\sqrt{7})\\pi \\approx 21.668\\,\\pi$. About the sharpness of the bound, for the hyperbolic Klein quartic surface numerical computations give the value $\\approx 21.414\\,\\pi$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"On the first eigenvalue of the Laplacian on compact surfaces of genus three\",\"authors\":\"A. Ros\",\"doi\":\"10.2969/jmsj/85898589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any compact riemannian surface of genus three $(\\\\Sigma,ds^2)$ Yang and Yau proved that the product of the first eigenvalue of the Laplacian $\\\\lambda_1(ds^2)$ and the area $Area(ds^2)$ is bounded above by $24\\\\pi$. In this paper we improve the result and we show that $\\\\lambda_1(ds^2)Area(ds^2)\\\\leq16(4-\\\\sqrt{7})\\\\pi \\\\approx 21.668\\\\,\\\\pi$. About the sharpness of the bound, for the hyperbolic Klein quartic surface numerical computations give the value $\\\\approx 21.414\\\\,\\\\pi$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2969/jmsj/85898589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/jmsj/85898589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the first eigenvalue of the Laplacian on compact surfaces of genus three
For any compact riemannian surface of genus three $(\Sigma,ds^2)$ Yang and Yau proved that the product of the first eigenvalue of the Laplacian $\lambda_1(ds^2)$ and the area $Area(ds^2)$ is bounded above by $24\pi$. In this paper we improve the result and we show that $\lambda_1(ds^2)Area(ds^2)\leq16(4-\sqrt{7})\pi \approx 21.668\,\pi$. About the sharpness of the bound, for the hyperbolic Klein quartic surface numerical computations give the value $\approx 21.414\,\pi$.