有理正交演算

IF 0.5 4区 数学
David Barnes
{"title":"有理正交演算","authors":"David Barnes","doi":"10.1007/s40062-017-0172-4","DOIUrl":null,"url":null,"abstract":"<p>We show that one can use model categories to construct rational orthogonal calculus. That is, given a continuous functor from vector spaces to based spaces one can construct a tower of approximations to this functor depending only on the rational homology type of the input functor, whose layers are given by rational spectra with an action of <i>O</i>(<i>n</i>). By work of Greenlees and Shipley, we see that these layers are classified by torsion <span>\\({{\\mathrm{H}}}^*({{\\mathrm{B}}}SO(n))[O(n)/SO(n)]\\)</span>-modules.</p>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"12 4","pages":"1009 - 1032"},"PeriodicalIF":0.5000,"publicationDate":"2017-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-017-0172-4","citationCount":"2","resultStr":"{\"title\":\"Rational orthogonal calculus\",\"authors\":\"David Barnes\",\"doi\":\"10.1007/s40062-017-0172-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that one can use model categories to construct rational orthogonal calculus. That is, given a continuous functor from vector spaces to based spaces one can construct a tower of approximations to this functor depending only on the rational homology type of the input functor, whose layers are given by rational spectra with an action of <i>O</i>(<i>n</i>). By work of Greenlees and Shipley, we see that these layers are classified by torsion <span>\\\\({{\\\\mathrm{H}}}^*({{\\\\mathrm{B}}}SO(n))[O(n)/SO(n)]\\\\)</span>-modules.</p>\",\"PeriodicalId\":636,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"12 4\",\"pages\":\"1009 - 1032\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2017-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-017-0172-4\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-017-0172-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-017-0172-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们证明了可以用模型范畴来构造有理正交演算。也就是说,给定一个从向量空间到基空间的连续函子,人们可以仅依赖输入函子的有理同调类型来构造该函子的近似塔,其层由作用为O(n)的有理谱给出。通过Greenlees和Shipley的工作,我们看到这些层是通过扭转\({{\mathrm{H}}}^*({{\mathrm{B}}}SO(n))[O(n)/SO(n)]\) -模块分类的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rational orthogonal calculus

We show that one can use model categories to construct rational orthogonal calculus. That is, given a continuous functor from vector spaces to based spaces one can construct a tower of approximations to this functor depending only on the rational homology type of the input functor, whose layers are given by rational spectra with an action of O(n). By work of Greenlees and Shipley, we see that these layers are classified by torsion \({{\mathrm{H}}}^*({{\mathrm{B}}}SO(n))[O(n)/SO(n)]\)-modules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信