{"title":"与Piltz除数函数有关的“双曲”求和的渐近公式","authors":"M. Bouderbala, Meselem Karras","doi":"10.7546/nntdm.2022.28.4.648-655","DOIUrl":null,"url":null,"abstract":"In this paper, we obtain asymptotic formula on the \"hyperbolic\" summation \\begin{equation*} \\underset{mn\\leq x}{\\sum }D_{k}\\left( \\gcd \\left( m,n\\right) \\right) \\text{ \\ \\ }\\left( k\\in \\mathbb{Z}_{\\geq 2}\\right), \\end{equation*} such that $D_{k}\\left( n\\right) = \\dfrac{\\tau _{k}\\left( n\\right) }{\\tau_{k}^{\\ast }\\left( n\\right) }$, where $\\tau _{k}\\left( n\\right) =\\!\\!\\sum\\limits_{n_{1}n_{2}\\ldots n_{k}=n}\\!\\!1$ denotes the Piltz divisor function, and $\\tau _{k}^{\\ast }\\left( n\\right) $ is the unitary analogue function of $\\tau _{k}\\left( n\\right) $.","PeriodicalId":44060,"journal":{"name":"Notes on Number Theory and Discrete Mathematics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic formula of a “hyperbolic” summation related to the Piltz divisor function\",\"authors\":\"M. Bouderbala, Meselem Karras\",\"doi\":\"10.7546/nntdm.2022.28.4.648-655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we obtain asymptotic formula on the \\\"hyperbolic\\\" summation \\\\begin{equation*} \\\\underset{mn\\\\leq x}{\\\\sum }D_{k}\\\\left( \\\\gcd \\\\left( m,n\\\\right) \\\\right) \\\\text{ \\\\ \\\\ }\\\\left( k\\\\in \\\\mathbb{Z}_{\\\\geq 2}\\\\right), \\\\end{equation*} such that $D_{k}\\\\left( n\\\\right) = \\\\dfrac{\\\\tau _{k}\\\\left( n\\\\right) }{\\\\tau_{k}^{\\\\ast }\\\\left( n\\\\right) }$, where $\\\\tau _{k}\\\\left( n\\\\right) =\\\\!\\\\!\\\\sum\\\\limits_{n_{1}n_{2}\\\\ldots n_{k}=n}\\\\!\\\\!1$ denotes the Piltz divisor function, and $\\\\tau _{k}^{\\\\ast }\\\\left( n\\\\right) $ is the unitary analogue function of $\\\\tau _{k}\\\\left( n\\\\right) $.\",\"PeriodicalId\":44060,\"journal\":{\"name\":\"Notes on Number Theory and Discrete Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notes on Number Theory and Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/nntdm.2022.28.4.648-655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Number Theory and Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nntdm.2022.28.4.648-655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Asymptotic formula of a “hyperbolic” summation related to the Piltz divisor function
In this paper, we obtain asymptotic formula on the "hyperbolic" summation \begin{equation*} \underset{mn\leq x}{\sum }D_{k}\left( \gcd \left( m,n\right) \right) \text{ \ \ }\left( k\in \mathbb{Z}_{\geq 2}\right), \end{equation*} such that $D_{k}\left( n\right) = \dfrac{\tau _{k}\left( n\right) }{\tau_{k}^{\ast }\left( n\right) }$, where $\tau _{k}\left( n\right) =\!\!\sum\limits_{n_{1}n_{2}\ldots n_{k}=n}\!\!1$ denotes the Piltz divisor function, and $\tau _{k}^{\ast }\left( n\right) $ is the unitary analogue function of $\tau _{k}\left( n\right) $.