{"title":"核主成分分析与神经网络相结合的过程间接控制研究","authors":"A. Errachdi, Sabrine Slama, Mohamed Benrejeb","doi":"10.1080/13873954.2019.1710715","DOIUrl":null,"url":null,"abstract":"ABSTRACT A new adaptive kernel principal component analysis (KPCA) for non-linear discrete system control is proposed. The proposed approach can be treated as a new proposition for data pre-processing techniques. Indeed, the input vector of neural network controller is pre-processed by the KPCA method. Then, the obtained reduced neural network controller is applied in the indirect adaptive control. The influence of the input data pre-processing on the accuracy of neural network controller results is discussed by using numerical examples of the cases of time-varying parameters of single-input single-output non-linear discrete system and multi-input multi-output system. It is concluded that, using the KPCA method, a significant reduction in the control error and the identification error is obtained. The lowest mean squared error and mean absolute error are shown that the KPCA neural network with the sigmoid kernel function is the best.","PeriodicalId":49871,"journal":{"name":"Mathematical and Computer Modelling of Dynamical Systems","volume":"26 1","pages":"144 - 168"},"PeriodicalIF":1.8000,"publicationDate":"2020-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/13873954.2019.1710715","citationCount":"2","resultStr":"{\"title\":\"On the combination of kernel principal component analysis and neural networks for process indirect control\",\"authors\":\"A. Errachdi, Sabrine Slama, Mohamed Benrejeb\",\"doi\":\"10.1080/13873954.2019.1710715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT A new adaptive kernel principal component analysis (KPCA) for non-linear discrete system control is proposed. The proposed approach can be treated as a new proposition for data pre-processing techniques. Indeed, the input vector of neural network controller is pre-processed by the KPCA method. Then, the obtained reduced neural network controller is applied in the indirect adaptive control. The influence of the input data pre-processing on the accuracy of neural network controller results is discussed by using numerical examples of the cases of time-varying parameters of single-input single-output non-linear discrete system and multi-input multi-output system. It is concluded that, using the KPCA method, a significant reduction in the control error and the identification error is obtained. The lowest mean squared error and mean absolute error are shown that the KPCA neural network with the sigmoid kernel function is the best.\",\"PeriodicalId\":49871,\"journal\":{\"name\":\"Mathematical and Computer Modelling of Dynamical Systems\",\"volume\":\"26 1\",\"pages\":\"144 - 168\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/13873954.2019.1710715\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical and Computer Modelling of Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/13873954.2019.1710715\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical and Computer Modelling of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/13873954.2019.1710715","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
On the combination of kernel principal component analysis and neural networks for process indirect control
ABSTRACT A new adaptive kernel principal component analysis (KPCA) for non-linear discrete system control is proposed. The proposed approach can be treated as a new proposition for data pre-processing techniques. Indeed, the input vector of neural network controller is pre-processed by the KPCA method. Then, the obtained reduced neural network controller is applied in the indirect adaptive control. The influence of the input data pre-processing on the accuracy of neural network controller results is discussed by using numerical examples of the cases of time-varying parameters of single-input single-output non-linear discrete system and multi-input multi-output system. It is concluded that, using the KPCA method, a significant reduction in the control error and the identification error is obtained. The lowest mean squared error and mean absolute error are shown that the KPCA neural network with the sigmoid kernel function is the best.
期刊介绍:
Mathematical and Computer Modelling of Dynamical Systems (MCMDS) publishes high quality international research that presents new ideas and approaches in the derivation, simplification, and validation of models and sub-models of relevance to complex (real-world) dynamical systems.
The journal brings together engineers and scientists working in different areas of application and/or theory where researchers can learn about recent developments across engineering, environmental systems, and biotechnology amongst other fields. As MCMDS covers a wide range of application areas, papers aim to be accessible to readers who are not necessarily experts in the specific area of application.
MCMDS welcomes original articles on a range of topics including:
-methods of modelling and simulation-
automation of modelling-
qualitative and modular modelling-
data-based and learning-based modelling-
uncertainties and the effects of modelling errors on system performance-
application of modelling to complex real-world systems.