马瑟理论与辛刚性

IF 0.7 1区 数学 Q2 MATHEMATICS
Mads R. Bisgaard
{"title":"马瑟理论与辛刚性","authors":"Mads R. Bisgaard","doi":"10.3934/jmd.2019018","DOIUrl":null,"url":null,"abstract":"Using methods from symplectic topology, we prove existence of invariant variational measures associated to the flow \\begin{document}$ \\phi_H $\\end{document} of a Hamiltonian \\begin{document}$ H\\in C^{\\infty}(M) $\\end{document} on a symplectic manifold \\begin{document}$ (M, \\omega) $\\end{document} . These measures coincide with Mather measures (from Aubry-Mather theory) in the Tonelli case. We compare properties of the supports of these measures to classical Mather measures, and we construct an example showing that their support can be extremely unstable when \\begin{document}$ H $\\end{document} fails to be convex, even for nearly integrable \\begin{document}$ H $\\end{document} . Parts of these results extend work by Viterbo [ 54 ] and Vichery [ 52 ]. Using ideas due to Entov-Polterovich [ 22 , 40 ], we also detect interesting invariant measures for \\begin{document}$ \\phi_H $\\end{document} by studying a generalization of the symplectic shape of sublevel sets of \\begin{document}$ H $\\end{document} . This approach differs from the first one in that it works also for \\begin{document}$ (M, \\omega) $\\end{document} in which every compact subset can be displaced. We present applications to Hamiltonian systems on \\begin{document}$ \\mathbb R^{2n} $\\end{document} and twisted cotangent bundles.","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2018-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mather theory and symplectic rigidity\",\"authors\":\"Mads R. Bisgaard\",\"doi\":\"10.3934/jmd.2019018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using methods from symplectic topology, we prove existence of invariant variational measures associated to the flow \\\\begin{document}$ \\\\phi_H $\\\\end{document} of a Hamiltonian \\\\begin{document}$ H\\\\in C^{\\\\infty}(M) $\\\\end{document} on a symplectic manifold \\\\begin{document}$ (M, \\\\omega) $\\\\end{document} . These measures coincide with Mather measures (from Aubry-Mather theory) in the Tonelli case. We compare properties of the supports of these measures to classical Mather measures, and we construct an example showing that their support can be extremely unstable when \\\\begin{document}$ H $\\\\end{document} fails to be convex, even for nearly integrable \\\\begin{document}$ H $\\\\end{document} . Parts of these results extend work by Viterbo [ 54 ] and Vichery [ 52 ]. Using ideas due to Entov-Polterovich [ 22 , 40 ], we also detect interesting invariant measures for \\\\begin{document}$ \\\\phi_H $\\\\end{document} by studying a generalization of the symplectic shape of sublevel sets of \\\\begin{document}$ H $\\\\end{document} . This approach differs from the first one in that it works also for \\\\begin{document}$ (M, \\\\omega) $\\\\end{document} in which every compact subset can be displaced. We present applications to Hamiltonian systems on \\\\begin{document}$ \\\\mathbb R^{2n} $\\\\end{document} and twisted cotangent bundles.\",\"PeriodicalId\":51087,\"journal\":{\"name\":\"Journal of Modern Dynamics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2018-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Dynamics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/jmd.2019018\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jmd.2019018","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

利用辛拓扑的方法,我们证明了与辛流形\begin{document}$(M,\omega)$\end{document}上C^{infty}(M)$\end{document}中的Hamiltonian \begin{document}$H\的流\begin \document}$\phi_H$\end{document}相关的不变变分测度的存在性。这些度量与托内利案例中的马瑟度量(来自奥布里-马瑟理论)一致。我们将这些测度的支持的性质与经典的Mather测度进行了比较,并构造了一个例子,表明当\begin{document}$H$\end{document}不凸时,即使对于几乎可积的\begin{document}$H$\end},它们的支持也可能是极不稳定的。这些结果的一部分扩展了Viterbo[54]和Vichery[52]的工作。利用Entov Polterovich[22,40]的思想,我们还通过研究\ begin{document}$H$\ end{document}的子级集的辛形状的推广,检测\ begin{document}$\ phi_H$\ end{document}的有趣的不变测度。这种方法与第一种方法的不同之处在于,它也适用于\bbegin{document}$(M,\omega)$\end{documents},其中每个紧子集都可以被替换。我们给出了在\ begin{document}$\mathbb R^{2n}$\ end{documents}和扭余切丛上的哈密顿系统的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mather theory and symplectic rigidity
Using methods from symplectic topology, we prove existence of invariant variational measures associated to the flow \begin{document}$ \phi_H $\end{document} of a Hamiltonian \begin{document}$ H\in C^{\infty}(M) $\end{document} on a symplectic manifold \begin{document}$ (M, \omega) $\end{document} . These measures coincide with Mather measures (from Aubry-Mather theory) in the Tonelli case. We compare properties of the supports of these measures to classical Mather measures, and we construct an example showing that their support can be extremely unstable when \begin{document}$ H $\end{document} fails to be convex, even for nearly integrable \begin{document}$ H $\end{document} . Parts of these results extend work by Viterbo [ 54 ] and Vichery [ 52 ]. Using ideas due to Entov-Polterovich [ 22 , 40 ], we also detect interesting invariant measures for \begin{document}$ \phi_H $\end{document} by studying a generalization of the symplectic shape of sublevel sets of \begin{document}$ H $\end{document} . This approach differs from the first one in that it works also for \begin{document}$ (M, \omega) $\end{document} in which every compact subset can be displaced. We present applications to Hamiltonian systems on \begin{document}$ \mathbb R^{2n} $\end{document} and twisted cotangent bundles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
11
审稿时长
>12 weeks
期刊介绍: The Journal of Modern Dynamics (JMD) is dedicated to publishing research articles in active and promising areas in the theory of dynamical systems with particular emphasis on the mutual interaction between dynamics and other major areas of mathematical research, including: Number theory Symplectic geometry Differential geometry Rigidity Quantum chaos Teichmüller theory Geometric group theory Harmonic analysis on manifolds. The journal is published by the American Institute of Mathematical Sciences (AIMS) with the support of the Anatole Katok Center for Dynamical Systems and Geometry at the Pennsylvania State University.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信