一类广义Pell数的求和

IF 0.4 Q4 MATHEMATICS
H. Prodinger
{"title":"一类广义Pell数的求和","authors":"H. Prodinger","doi":"10.2478/amsil-2020-0024","DOIUrl":null,"url":null,"abstract":"Abstract A new family of generalized Pell numbers was recently introduced and studied by Bród ([2]). These numbers possess, as Fibonacci numbers, a Binet formula. Using this, partial sums of arbitrary powers of generalized Pell numbers can be summed explicitly. For this, as a first step, a power P𝓁n is expressed as a linear combination of Pmn. The summation of such expressions is then manageable using generating functions. Since the new family contains a parameter R = 2r, the relevant manipulations are quite involved, and computer algebra produced huge expressions that where not trivial to handle at times.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"35 1","pages":"105 - 112"},"PeriodicalIF":0.4000,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Summing a Family of Generalized Pell Numbers\",\"authors\":\"H. Prodinger\",\"doi\":\"10.2478/amsil-2020-0024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A new family of generalized Pell numbers was recently introduced and studied by Bród ([2]). These numbers possess, as Fibonacci numbers, a Binet formula. Using this, partial sums of arbitrary powers of generalized Pell numbers can be summed explicitly. For this, as a first step, a power P𝓁n is expressed as a linear combination of Pmn. The summation of such expressions is then manageable using generating functions. Since the new family contains a parameter R = 2r, the relevant manipulations are quite involved, and computer algebra produced huge expressions that where not trivial to handle at times.\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\"35 1\",\"pages\":\"105 - 112\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2020-0024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2020-0024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

最近通过Bród([2])引入并研究了一类新的广义Pell数。这些数字和斐波那契数一样,具有比奈公式。利用这一方法,可以显式地求和广义佩尔数的任意幂的部分和。为此,作为第一步,幂P𝓁n被表示为Pmn的线性组合。然后可以使用生成函数来管理这些表达式的总和。由于新的家族包含参数R = 2r,因此相关的操作非常复杂,并且计算机代数产生了大量的表达式,这些表达式有时很难处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Summing a Family of Generalized Pell Numbers
Abstract A new family of generalized Pell numbers was recently introduced and studied by Bród ([2]). These numbers possess, as Fibonacci numbers, a Binet formula. Using this, partial sums of arbitrary powers of generalized Pell numbers can be summed explicitly. For this, as a first step, a power P𝓁n is expressed as a linear combination of Pmn. The summation of such expressions is then manageable using generating functions. Since the new family contains a parameter R = 2r, the relevant manipulations are quite involved, and computer algebra produced huge expressions that where not trivial to handle at times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Mathematicae Silesianae
Annales Mathematicae Silesianae Mathematics-Mathematics (all)
CiteScore
0.60
自引率
25.00%
发文量
17
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信