不同解释变量的模型组合是否能提高旅游需求预测绩效?

IF 3.6 3区 管理学 Q1 ECONOMICS
Xi Wu, A. Blake
{"title":"不同解释变量的模型组合是否能提高旅游需求预测绩效?","authors":"Xi Wu, A. Blake","doi":"10.1177/13548166221132645","DOIUrl":null,"url":null,"abstract":"The aim of this study is to assess whether combining econometric models with different explanatory variables can contribute to better tourism demand forecasts. Inbound tourism demand to the UK from seven leading markets is forecast, respectively, based on quarterly data using both individual and combination models. Causal econometric models that serve as constituents in combination take two specifications which are different in identified influencing factors. The empirical results show that generally including different explanatory variables in combination can produce better predictions according to both predictive accuracy measures and statistical tests. It suggests that the combination forecasting approach is superior to the individual one, and diversified information embedded in different explanatory variables should be integrated to improve tourism demand forecasting performance.","PeriodicalId":23204,"journal":{"name":"Tourism Economics","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Does the combination of models With different explanatory variables improve tourism demand forecasting performance?\",\"authors\":\"Xi Wu, A. Blake\",\"doi\":\"10.1177/13548166221132645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this study is to assess whether combining econometric models with different explanatory variables can contribute to better tourism demand forecasts. Inbound tourism demand to the UK from seven leading markets is forecast, respectively, based on quarterly data using both individual and combination models. Causal econometric models that serve as constituents in combination take two specifications which are different in identified influencing factors. The empirical results show that generally including different explanatory variables in combination can produce better predictions according to both predictive accuracy measures and statistical tests. It suggests that the combination forecasting approach is superior to the individual one, and diversified information embedded in different explanatory variables should be integrated to improve tourism demand forecasting performance.\",\"PeriodicalId\":23204,\"journal\":{\"name\":\"Tourism Economics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2022-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tourism Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1177/13548166221132645\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tourism Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1177/13548166221132645","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 3

摘要

本研究的目的是评估结合不同解释变量的计量经济模型是否有助于更好的旅游需求预测。根据季度数据,使用单独模型和组合模型,分别预测了七个主要市场对英国的入境旅游需求。作为组合成分的因果计量模型采用两种规范,这两种规范在确定的影响因素上是不同的。实证结果表明,从预测精度度量和统计检验两方面来看,通常将不同解释变量组合在一起可以产生更好的预测结果。研究表明,组合预测方法优于个体预测方法,需要整合不同解释变量中嵌入的多样化信息,以提高旅游需求预测的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Does the combination of models With different explanatory variables improve tourism demand forecasting performance?
The aim of this study is to assess whether combining econometric models with different explanatory variables can contribute to better tourism demand forecasts. Inbound tourism demand to the UK from seven leading markets is forecast, respectively, based on quarterly data using both individual and combination models. Causal econometric models that serve as constituents in combination take two specifications which are different in identified influencing factors. The empirical results show that generally including different explanatory variables in combination can produce better predictions according to both predictive accuracy measures and statistical tests. It suggests that the combination forecasting approach is superior to the individual one, and diversified information embedded in different explanatory variables should be integrated to improve tourism demand forecasting performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tourism Economics
Tourism Economics Multiple-
CiteScore
9.30
自引率
11.40%
发文量
90
期刊介绍: Tourism Economics, published quarterly, covers the business aspects of tourism in the wider context. It takes account of constraints on development, such as social and community interests and the sustainable use of tourism and recreation resources, and inputs into the production process. The definition of tourism used includes tourist trips taken for all purposes, embracing both stay and day visitors. Articles address the components of the tourism product (accommodation; restaurants; merchandizing; attractions; transport; entertainment; tourist activities); and the economic organization of tourism at micro and macro levels (market structure; role of public/private sectors; community interests; strategic planning; marketing; finance; economic development).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信